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We have seen in the computations for the helix on the cylinder
(Example 2, Lecture 22) were feasible because the helix is a
curve of constant speed. For a general curve the expressions for
the Darboux vectors T , U and N are much more complicated. The
following proposition will simplify computations in the general case.
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Proposition (1): Let T̃ , Ũ, Ñ be positive multiples of T , U, N,
i.e.

T̃ (t) = λ(t) ⋅T (t), Ũ(t) = µ(t) ⋅U(t), Ñ(t) = ν(t) ⋅N(t)

for some functions λ,µ, ν ∶ I → R with λ(t), µ(t), ν(t) > 0 for
all t ∈ I . Then

κg =
T̃ ′ ● Ũ

∣γ′∣ ⋅ ∣T̃ ∣ ⋅ ∣Ũ ∣
= −

T̃ ● Ũ ′

∣γ′∣ ⋅ ∣T̃ ∣ ⋅ ∣Ũ ∣
,

κn =
T̃ ′ ● Ñ

∣γ′∣ ⋅ ∣T̃ ∣ ⋅ ∣Ñ ∣
= −

T̃ ● Ñ ′

∣γ′∣ ⋅ ∣T̃ ∣ ⋅ ∣Ñ ∣
,

κt =
Ũ ′ ● Ñ

∣γ′∣ ⋅ ∣Ũ ∣ ⋅ ∣Ñ ∣
= −

Ũ ● Ñ ′

∣γ′∣ ⋅ ∣Ũ ∣ ⋅ ∣Ñ ∣
.

Dr. Nasser Bin Turki Curvatures of Curves on Surfaces Math 473 Introduction to Differential Geometry Lecture 25



Remark:
For example we could consider

T̃ = γ′ = ∣γ′∣ ⋅T , λ = ∣γ′∣,

Ñ = Xu ×Xv = ∣Xu ×Xv ∣ ⋅N, µ = ∣Xu ×Xv ∣,

Ũ = Ñ × T̃ = ∣γ′∣ ⋅ ∣Xu ×Xv ∣ ⋅ (N ×T ) = ∣γ′∣ ⋅ ∣Xu ×Xv ∣ ⋅U,

ν = λ ⋅ µ = ∣γ′∣ ⋅ ∣Xu ×Xv ∣.

Dr. Nasser Bin Turki Curvatures of Curves on Surfaces Math 473 Introduction to Differential Geometry Lecture 25



Proof of Proposition (1):
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Serret-Frenet frame vs. Darboux frame

Proposition (2):
We have

κ2
g + κ

2
n = κ

2

, where κg is the geodesic curvature, κn is the normal curvature
and κ is the curvature of the curve γ.
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Examples

Example (1):*
Let X be the surface patch X (u, v) = (u, v ,uv).

(a) Check that the non-unit speed
curve γ(t) = X (t,−t) = (t,−t,−t2) is a geodesic.

(b) Let γ(t) = X (u(t), v(t)) = (u(t), v(t),u(t)v(t)) be a curve
on the surface X .

(i) Show that a (non-unit) normal to X along the curve γ is given
by Ñ = (−v ,−u,1).

(ii) Show that a (non-unit) tangent of the curve γ is given
by T̃ = (u′, v ′,u′v + uv ′).

(iii) Find a condition on u and v for the curve γ to be a geodesic.
(iv) Use the condition you have found to find as many geodesics

on X as you can.
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Thanks for listening .
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