Helix Curve
 Math 473
 Introduction to Differential Geometry Lecture 12

Dr. Nasser Bin Turki
King Saud University
Department of Mathematics

October 6, 2018

Helix

Definition (1): A general Helix (cylindrical helix) is a regular parametrised space curve $\alpha: I \mapsto \mathbb{R}^{3}$ such that for a constant unit vector \vec{u}, we have

$$
T(t) \bullet u=\cos \theta
$$

Helix

Definition (1): A general Helix (cylindrical helix) is a regular parametrised space curve $\alpha: I \mapsto \mathbb{R}^{3}$ such that for a constant unit vector \vec{u}, we have

$$
T(t) \bullet u=\cos \theta
$$

i.e. the tangent $T(t)$ makes a constant angle θ with \vec{u} for all t.

Examples

Example(1): Show that every plane curve is a Helix.

Circular Helix

Definition (2): A circular helix, (i.e. one with constant radius) has constant band curvature and constant torsion. The Circular Helix has the form

$$
\alpha(t)=(a \cos t, a \sin t, b t)
$$

where $\alpha: \mathbb{R} \mapsto \mathbb{R}^{3}, \quad a, b$ are constant and $a>0$.

Circular Helix

Definition (2): A circular helix, (i.e. one with constant radius) has constant band curvature and constant torsion. The Circular Helix has the form

$$
\alpha(t)=(a \cos t, a \sin t, b t)
$$

where $\alpha: \mathbb{R} \mapsto \mathbb{R}^{3}, \quad a, b$ are constant and $a>0$.
The Circular refers to the fact that the projection of α in the plane is a circle.

Theorem(1):(Lancret, 1802)
Let $\alpha: I \mapsto \mathbb{R}^{3}$ be a regular parametrised space curve with $\kappa(t) \neq 0$, for all $t \in I$. Then, α is a Helix if and only if $\frac{\tau(t)}{\kappa(t)}=c$, where c is constant.

Proof:

Thanks for listening.

