Sphere Curve Math 473
 Introduction to Differential Geometry Lecture 13

Dr. Nasser Bin Turki
King Saud University
Department of Mathematics

October 6, 2018

Sphere Curves

Definition (1): We say that A Sphere Curve is a regular parametrised space curve $\alpha: J \mapsto \mathbb{R}^{3}$ if there is a point $m \in \mathbb{R}^{3}$ and $r \in \mathbb{R}$ such that

$$
|\alpha(t)-m|^{2}=r^{2}
$$

Sphere Curves

Definition (1): We say that A Sphere Curve is a regular parametrised space curve $\alpha: I \mapsto \mathbb{R}^{3}$ if there is a point $m \in \mathbb{R}^{3}$ and $r \in \mathbb{R}$ such that

$$
|\alpha(t)-m|^{2}=r^{2}
$$

In other words, let
$\alpha(t)=(x(t), y(t), z(t)), \quad m=(a, b, c)$.
Then, α is a sphere curve if

$$
|\alpha(t)-m|=\sqrt{(x(t)-a)^{2}+(y(t)-b)^{2},(z(t)-c)^{2}}=r
$$

Hence,

$$
(x(t)-a)^{2}+(y(t)-b)^{2},(z(t)-c)^{2}=r^{2}
$$

So, this is an equation of sphere in \mathbb{R}^{3} with center $m=(a, b, c)$ and radius $r>0$.

Hence,

$$
(x(t)-a)^{2}+(y(t)-b)^{2},(z(t)-c)^{2}=r^{2}
$$

So, this is an equation of sphere in \mathbb{R}^{3} with center $m=(a, b, c)$ and radius $r>0$.

We denoted the sphere whose center is m and radius r by

$$
S(m, r)
$$

Hence,

$$
(x(t)-a)^{2}+(y(t)-b)^{2},(z(t)-c)^{2}=r^{2}
$$

So, this is an equation of sphere in \mathbb{R}^{3} with center $m=(a, b, c)$ and radius $r>0$.

We denoted the sphere whose center is m and radius r by

$$
S(m, r)
$$

Example

The curve $\alpha(t)=(-\cos 2 t,-2 \cos t, \sin 2 t)$ is a sphere curve.

Theorem(1):
Let $\alpha: I \mapsto \mathbb{R}^{3}$ be a unit speed curve with $\kappa(t)>0$ and $\tau(t) \neq 0$ for all $t \in I$.

Theorem(1):

Let $\alpha: I \mapsto \mathbb{R}^{3}$ be a unit speed curve with $\kappa(t)>0$ and $\tau(t) \neq 0$ for all $t \in I$.
If α is a sphere curve that lies on the sphere $S(m, r)$, then

$$
\alpha(t)=m-\rho(t) N(t)-\rho^{\prime}(t) \sigma(t) B(t),
$$

where $\rho(t)=\frac{1}{\kappa(t)}, \sigma(t)=\frac{1}{\tau(t)}$.

Theorem(1):

Let $\alpha: I \mapsto \mathbb{R}^{3}$ be a unit speed curve with $\kappa(t)>0$ and $\tau(t) \neq 0$ for all $t \in I$.
If α is a sphere curve that lies on the sphere $S(m, r)$, then

$$
\alpha(t)=m-\rho(t) N(t)-\rho^{\prime}(t) \sigma(t) B(t),
$$

where $\rho(t)=\frac{1}{\kappa(t)}, \sigma(t)=\frac{1}{\tau(t)}$.
In particular,

$$
\rho^{2}(t)+\left(\rho^{\prime}(t) \sigma(t)\right)^{2}=r^{2} .
$$

Proof:

Theorem(2):
Let $\alpha: / \mapsto \mathbb{R}^{3}$ be a unit speed curve with $\kappa(t)>0$ and $\tau(t) \neq 0$ for all $t \in I$.

Theorem(2):

Let $\alpha: I \mapsto \mathbb{R}^{3}$ be a unit speed curve with $\kappa(t)>0$ and $\tau(t) \neq 0$ for all $t \in I$.
If

$$
\rho^{2}(t)+\left(\rho^{\prime}(t) \sigma(t)\right)^{2}=r^{2}
$$

where $\rho(t)=\frac{1}{\kappa(t)}, \sigma(t)=\frac{1}{\tau(t)}, \rho^{\prime}(t) \neq 0$ for all $t \in I$ and r is constant,

Theorem(2):

Let $\alpha: I \mapsto \mathbb{R}^{3}$ be a unit speed curve with $\kappa(t)>0$ and $\tau(t) \neq 0$ for all $t \in I$.
If

$$
\rho^{2}(t)+\left(\rho^{\prime}(t) \sigma(t)\right)^{2}=r^{2}
$$

where $\rho(t)=\frac{1}{\kappa(t)}, \sigma(t)=\frac{1}{\tau(t)}, \rho^{\prime}(t) \neq 0$ for all $t \in I$ and r is constant, then α is a sphere curve that lies on the sphere $S(m, r)$.

Proof:

Thanks for listening.

