CALCULUS FOR ENGINEERS MATH 1110

Instructor:
Dr. Mohamed El-Shazly
Assistant Prof. of Mechanical Design and Tribology mohamed.elshazly@ams-sae.com
Office: S053

Line Integral

Arc Length

$$
L=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|P_{i-1} P_{i}\right|
$$

$$
L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

EXAMPLE 1 Find the length of the arc of the semicubical parabola $y^{2}=x^{3}$ between the points $(1,1)$ and $(4,8)$.

SOLUTION For the top half of the curve we have

$$
y=x^{3 / 2} \quad \frac{d y}{d x}=\frac{3}{2} x^{1 / 2}
$$

and so the arc length formula gives

$$
L=\int_{1}^{4} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{1}^{4} \sqrt{1+\frac{9}{4} x} d x
$$

If we substitute $u=1+\frac{9}{4} x$, then $d u=\frac{9}{4} d x$. When $x=1, u=\frac{13}{4}$; when $x=4, u=10$.

Therefore

$$
\begin{aligned}
L & \left.=\frac{4}{9} \int_{13 / 4}^{10} \sqrt{u} d u=\frac{4}{9} \cdot \frac{2}{3} u^{3 / 2}\right]_{13 / 4}^{10} \\
& =\frac{8}{27}\left[10^{3 / 2}-\left(\frac{13}{4}\right)^{3 / 2}\right]=\frac{1}{27}(80 \sqrt{10}-13 \sqrt{13})
\end{aligned}
$$

Curves Defined by Parametric Equations

- Imagine that a particle moves along the curve C shown in Figure 1. It is impossible to describe C by an equation of the form $y=f(x)$ because C fails the Vertical Line Test.
- But the x - and y-coordinates of the particle are functions of time and so we can write $x=f(t)$ and $y=g(t)$.
- Such a pair of equations is often a convenient way of describing a curve and gives rise to the following definition.
- Suppose that x and y are both given as functions of a third variable (called a parameter) by the equation

$$
x=f(t) \quad y=g(t)
$$

Calculus with Parametric Curve

Arc Length

$$
L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

Using Parametric equation $x=f(t)$ and $y=g(t), \alpha \leq t \leq \beta$, where $d x / d t=f^{\prime}(t)>0$.

$$
L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{\alpha}^{\beta} \sqrt{1+\left(\frac{d y / d t}{d x / d t}\right)^{2}} \frac{d x}{d t} d t
$$

$$
L=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

Example 2

Find the Length of one arch of the cycloid $x=r(\theta-\sin \theta), y=r(1-\cos \theta)$
Soultion

$$
\frac{d x}{d \theta}=r(1-\cos \theta) \quad \text { and } \quad \frac{d y}{d \theta}=r \sin \theta
$$

we have

$$
\begin{aligned}
L & =\int_{0}^{2 \pi} \sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta \\
& =\int_{0}^{2 \pi} \sqrt{r^{2}(1-\cos \theta)^{2}+r^{2} \sin ^{2} \theta} d \theta \\
& =\int_{0}^{2 \pi} \sqrt{r^{2}\left(1-2 \cos \theta+\cos ^{2} \theta+\sin ^{2} \theta\right)} d \theta \\
& =r \int_{0}^{2 \pi} \sqrt{2(1-\cos \theta)} d \theta
\end{aligned}
$$

To evaluate this integral we use the identity $\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$ with $\theta=2 x$, which gives $1-\cos \theta=2 \sin ^{2}(\theta / 2)$. Since $0 \leqslant \theta \leqslant 2 \pi$, we have $0 \leqslant \theta / 2 \leqslant \pi$ and so $\sin (\theta / 2) \geqslant 0$. Therefore
and so

$$
\sqrt{2(1-\cos \theta)}=\sqrt{4 \sin ^{2}(\theta / 2)}=2|\sin (\theta / 2)|=2 \sin (\theta / 2)
$$

$$
\begin{aligned}
L & =2 r \int_{0}^{2 \pi} \sin (\theta / 2) d \theta=2 r[-2 \cos (\theta / 2)]_{0}^{2 \pi} \\
& =2 r[2+2]=8 r
\end{aligned}
$$

Line Integrals

In this section we define an integral that is similar to a single integral except that instead of integrating over an interval $[a, b]$, we integrate over a curve C.

Such integrals are called line integrals, although "curve integrals" would be better terminology.

They were invented in the early 19th century to solve problems involving fluid flow, forces, electricity, and magnetism.

$$
\int_{C} f(x, y) d s=\int_{a}^{b} f(x(t), y(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

EXAMPLE 1 Evaluate $\int_{C}\left(2+x^{2} y\right) d s$, where C is the upper half of the unit circle $x^{2}+y^{2}=1$.

Recall that the unit circle can be parametrized by means of the equations

$$
x=\cos t \quad y=\sin t
$$

and the upper half of the circle is described by the parameter interval $0 \leqslant t \leqslant \pi$. (See Figure 3.) Therefore Formula 3 gives

$$
\begin{aligned}
\int_{C}\left(2+x^{2} y\right) d s & =\int_{0}^{\pi}\left(2+\cos ^{2} t \sin t\right) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& =\int_{0}^{\pi}\left(2+\cos ^{2} t \sin t\right) \sqrt{\sin ^{2} t+\cos ^{2} t} d t \\
& =\int_{0}^{\pi}\left(2+\cos ^{2} t \sin t\right) d t=\left[2 t-\frac{\cos ^{3} t}{3}\right]_{0}^{\pi} \\
& =2 \pi+\frac{2}{3}
\end{aligned}
$$

EXAMPLE 2 Evaluate $\int_{C} 2 x d s$, where C consists of the arc C_{1} of the parabola $y=x^{2}$ from $(0,0)$ to $(1,1)$ followed by the vertical line segment C_{2} from $(1,1)$ to $(1,2)$.

FIGURE 5

SOLUTION The curve C is shown in Figure 5. C_{1} is the graph of a function of x, so we can choose X as the parameter and the equations for C_{1} become

$$
x=x \quad y=x^{2} \quad 0 \leqslant x \leqslant 1
$$

Therefore

$$
\begin{aligned}
\int_{C_{1}} 2 x d s & =\int_{0}^{1} 2 x \sqrt{\left(\frac{d x}{d x}\right)^{2}+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{0}^{1} 2 x \sqrt{1+4 x^{2}} d x \\
& \left.=\frac{1}{4} \cdot \frac{2}{3}\left(1+4 x^{2}\right)^{3 / 2}\right]_{0}^{1}=\frac{5 \sqrt{5}-1}{6}
\end{aligned}
$$

On C_{2} we choose y as the parameter, so the equations of C_{2} are
and

$$
\begin{gathered}
x=1 \quad y=y \quad 1 \leqslant y \leqslant 2 \\
\int_{C_{2}} 2 x d s=\int_{1}^{2} 2(1) \sqrt{\left(\frac{d x}{d y}\right)^{2}+\left(\frac{d y}{d y}\right)^{2}} d y=\int_{1}^{2} 2 d y=2
\end{gathered}
$$

Thus

$$
\int_{C} 2 X d s=\int_{C_{1}} 2 X d s+\int_{C_{2}} 2 X d s=\frac{5 \sqrt{5}-1}{6}+2
$$

Example 2

Evaluate $\int_{C} x y^{4} d s$ where C is the right half of the circle, $x^{2}+y^{2}=16$ rotated in the counter clockwise direction.

Solution

We first need a parameterization of the circle. This is given by,

$$
x=4 \cos t \quad y=4 \sin t
$$

We now need a range of t 's that will give the right half of the circle. The following range of t 's will do this.

$$
-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}
$$

Now, we need the derivatives of the parametric equations and let's compute $d s$.

$$
\begin{aligned}
& \frac{d x}{d t}=-4 \sin t \quad \frac{d y}{d t}=4 \cos t \\
& d s=\sqrt{16 \sin ^{2} t+16 \cos ^{2} t} d t=4 d t
\end{aligned}
$$

The line integral is then,

$$
\begin{aligned}
\int_{C} x y^{4} d s & =\int_{-\pi / 2}^{\pi / 2} 4 \cos t(4 \sin t)^{4}(4) d t \\
& =4096 \int_{-\pi / 2}^{\pi / 2} \cos t \sin ^{4} t d t \\
& =\left.\frac{4096}{5} \sin ^{5} t\right|_{-\frac{\pi}{2}} ^{\frac{\pi}{2}} \\
& =\frac{8192}{5}
\end{aligned}
$$

Example 3

Evaluate $\int_{C} 4 x^{3} d s$ where C is the curve shown below.

$$
\begin{array}{llc}
C_{1}: & x=t, y=-1, & -2 \leq t \leq 0 \\
C_{2}: & x=t, y=t^{3}-1, & 0 \leq t \leq 1 \\
C_{3}: & x=1, y=t, & 0 \leq t \leq 2
\end{array}
$$

Now let's do the line integral over each of these curves.

$$
\begin{aligned}
& \int_{C_{1}} 4 x^{3} d s=\int_{-2}^{0} 4 t^{3} \sqrt{(1)^{2}+(0)^{2}} d t=\int_{-2}^{0} 4 t^{3} d t=\left.t^{4}\right|_{-2} ^{0}=-16 \\
& \int_{C_{2}} 4 x^{3} d s=\int_{0}^{1} 4 t^{3} \sqrt{(1)^{2}+\left(3 t^{2}\right)^{2}} d t \\
&=\int_{0}^{1} 4 t^{3} \sqrt{1+9 t^{4}} d t \\
&=\left.\frac{1}{9}\left(\frac{2}{3}\right)\left(1+9 t^{4}\right)^{\frac{3}{2}}\right|_{0} ^{1}=\frac{2}{27}\left(10^{\frac{3}{2}}-1\right)=2.268
\end{aligned}
$$

$$
\int_{C_{3}} 4 x^{3} d s=\int_{0}^{2} 4(1)^{3} \sqrt{(0)^{2}+(1)^{2}} d t=\int_{0}^{2} 4 d t=8
$$

Finally, the line integral that we were asked to compute is,

$$
\begin{aligned}
\int_{C} 4 x^{3} d s & =\int_{C_{1}} 4 x^{3} d s+\int_{C_{2}} 4 x^{3} d s+\int_{C_{3}} 4 x^{3} d s \\
& =-16+2.268+8 \\
& =-5.732
\end{aligned}
$$

