Tangent Surface, Involutes and Evolutes Math 473
 Introduction to Differential Geometry Lecture 16

Dr. Nasser Bin Turki
King Saud University
Department of Mathematics

October 21, 2018

In this Lecture, we are going to show that a given space curve $\alpha: / \mapsto \mathbb{R}^{3}$ determines two infinite systems of curves which are involutes and evolutes of α.

In this Lecture, we are going to show that a given space curve $\alpha: I \mapsto \mathbb{R}^{3}$ determines two infinite systems of curves which are involutes and evolutes of α.

Definition (1):

Let $\alpha: / \mapsto \mathbb{R}^{3}$ be a unit speed curve. The Tangent Surface of a curve α is the surface generated by lines tangent to α.

Definition (2):

Let α and β be two regular curves defined on an interval I. The curve β is an involute of α if β lies on the tangent surface $\left(\beta\left(t_{0}\right)\right.$ lies on the tangent line to α at $\alpha\left(t_{0}\right)$) and the tangents to α and β at $\alpha\left(t_{0}\right)$ and $\beta\left(t_{0}\right)$ are perpendicular.

Definition (2):

Let α and β be two regular curves defined on an interval I. The curve β is an involute of α if β lies on the tangent surface $\left(\beta\left(t_{0}\right)\right.$ lies on the tangent line to α at $\alpha\left(t_{0}\right)$) and the tangents to α and β at $\alpha\left(t_{0}\right)$ and $\beta\left(t_{0}\right)$ are perpendicular.

We have $\alpha^{\prime} \bullet \beta^{\prime}=0, \quad$ i.e. $\alpha^{\prime} \perp \beta^{\prime}$

Lemma (1):

The formula of the curve β which is involute of α is

$$
\beta(s)=\alpha(s)+(c-s) T_{\alpha}(s),
$$

where $\alpha(s)$ is a unit speed curve and s is the arc-length. (Note that this formula for α is unit speed curve).

Proof:

Lemma (2):

If α is a regular curve (not a unit speed curve), then the formula of the curve β which is involute of α is

$$
\beta(t)=\alpha(t)+(c-S(t)) \frac{\alpha^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}
$$

Examples

Example(1) Let $\alpha(t)=(\cos t, \sin t, 0)$. Find the involute curve

 of α.

Examples

Example(1) Let $\alpha(t)=(\cos t, \sin t, 0)$. Find the involute curve

 of α.

Examples

Example(2) Let $\alpha(t)=\left(t, \frac{1}{t}, \sqrt{2} \ln (t)\right)$, where $t \in(0, \infty)$. Find the involute curve of α.

Thanks for listening.

