Tangent Surface, Involutes and Evolutes Math 473
 Introduction to Differential Geometry Lecture 17

Dr. Nasser Bin Turki
King Saud University
Department of Mathematics

October 21, 2018

Definition (1):

Let α and γ be two regular curves defined on an interval l. The curve γ is an evolute of α if α is an involute of γ.

Lemma (1):

The formula of the curve γ which is evolute of α is

$$
\gamma(t)=\alpha(t)+\frac{1}{\kappa_{\alpha}(t)} N_{\alpha}(t)+\frac{1}{\kappa_{\alpha}(t)} \cot \left(\int \tau_{\alpha}(t) d t+c\right) B_{\alpha}(t)
$$

(This is the general formula).

Lemma (1):

The formula of the curve γ which is evolute of α is

$$
\gamma(t)=\alpha(t)+\frac{1}{\kappa_{\alpha}(t)} N_{\alpha}(t)+\frac{1}{\kappa_{\alpha}(t)} \cot \left(\int \tau_{\alpha}(t) d t+c\right) B_{\alpha}(t)
$$

(This is the general formula).
Special case: If $\tau=0$, then the formula of the curve γ which is evolute of α is

$$
\gamma(t)=\alpha(t)+\frac{1}{\kappa_{\alpha}(t)} N_{\alpha}(t)+\frac{1}{\kappa_{\alpha}(t)} \cot c B_{\alpha}(t)
$$

where $B_{\alpha}(t)$ is constant.

Proof of the general formula:

Evolute curve in the plane

Let $\alpha: I \mapsto \mathbb{R}^{2}$ be a regular curve with $\kappa>0$.

* If α is a unite speed, then the formula of the curve γ which is evolute of α is

$$
\gamma(t)=\alpha(t)+\frac{1}{\kappa_{\alpha}(t)} N_{\alpha}(t)
$$

Evolute curve in the plane

Let $\alpha: I \mapsto \mathbb{R}^{2}$ be a regular curve with $\kappa>0$.

* If α is a unite speed, then the formula of the curve γ which is evolute of α is

$$
\gamma(t)=\alpha(t)+\frac{1}{\kappa_{\alpha}(t)} N_{\alpha}(t)
$$

* if α is not unit speed, then the formula of the curve γ which is evolute of α is

$$
\gamma(t)=\alpha(t)+\frac{\left|\alpha^{\prime}\right|^{2} \omega\left(\alpha^{\prime}\right)}{\left(\alpha^{\prime \prime} \bullet \omega\left(\alpha^{\prime}\right)\right)},
$$

where $\omega: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}, \quad \omega((x, y)) \mapsto(-y, x)$.

Examples

Example(1) Let $\alpha(t)=(\cos t, \sin t)$. Find the evolute curve by α.

Examples

Example(2) Let $\alpha(t)=\left(t, t^{2}\right)$. Find the evolute curve by α.

Thanks for listening.

