First Fundamental Form Math 473
 Introduction to Differential Geometry Lecture 21

Dr. Nasser Bin Turki
King Saud University
Department of Mathematics

November 6, 2018

First Fundamental Form

Let $X: U \rightarrow \mathbb{R}^{3}$ be a regular surface patch. Let $(u(t), v(t)) \in U$. Let $\alpha: I \subset \mathbb{R} \rightarrow U \subset \mathbb{R}^{2}, \alpha(t)==X(u(t), v(t))$ be a regular curve on U.

The velocity of a curve $\alpha(t)=X(u(t), v(t))$ on the surface patch X is the tangent vector $\alpha^{\prime}=u^{\prime} X_{u}+v^{\prime} X_{v}$.

Let $X: U \rightarrow \mathbb{R}^{3}$ be a regular surface patch. Let $(u(t), v(t)) \in U$. Let $\alpha: I \subset \mathbb{R} \rightarrow U \subset \mathbb{R}^{2}, \alpha(t)==X(u(t), v(t))$ be a regular curve on U.

The velocity of a curve $\alpha(t)=X(u(t), v(t))$ on the surface patch X is the tangent vector $\alpha^{\prime}=u^{\prime} X_{u}+v^{\prime} X_{v}$.
For the speed of the curve α we compute

Let $X: U \rightarrow \mathbb{R}^{3}$ be a regular surface patch. Let $(u(t), v(t)) \in U$. Let $\alpha: I \subset \mathbb{R} \rightarrow U \subset \mathbb{R}^{2}, \alpha(t)==X(u(t), v(t))$ be a regular curve on U.

The velocity of a curve $\alpha(t)=X(u(t), v(t))$ on the surface patch X is the tangent vector $\alpha^{\prime}=u^{\prime} X_{u}+v^{\prime} X_{v}$.
For the speed of the curve α we compute

$$
\begin{aligned}
\left|\alpha^{\prime}\right|^{2} & =\alpha^{\prime} \bullet \alpha^{\prime}=\left(u^{\prime} X_{u}+v^{\prime} X_{v}\right) \bullet\left(u^{\prime} X_{u}+v^{\prime} X_{v}\right) \\
& =\left(u^{\prime}\right)^{2}\left(X_{u} \bullet X_{u}\right)+u^{\prime} v^{\prime}\left(X_{u} \bullet X_{v}\right)+v^{\prime} u^{\prime}\left(X_{v} \bullet X_{u}\right)+\left(v^{\prime}\right)^{2}\left(X_{v} \bullet X_{v}\right) \\
& =\left(u^{\prime}\right)^{2}\left(X_{u} \bullet X_{u}\right)+2 u^{\prime} v^{\prime}\left(X_{u} \bullet X_{v}\right)+\left(v^{\prime}\right)^{2}\left(X_{v} \bullet X_{v}\right) .
\end{aligned}
$$

Definition (1):

The coefficients of the first fundamental form of the surface patch $X: U \rightarrow \mathbb{R}^{3}$ are

Definition (1):

The coefficients of the first fundamental form of the surface patch $X: U \rightarrow \mathbb{R}^{3}$ are

$$
\begin{aligned}
& E(u, v)=X_{u}(u, v) \bullet X_{u}(u, v) \\
& F(u, v)=X_{u}(u, v) \bullet X_{v}(u, v)=X_{v}(u, v) \bullet X_{u}(u, v), \\
& G(u, v)=X_{v}(u, v) \bullet X_{v}(u, v)
\end{aligned}
$$

or, in short,

$$
E=X_{u} \bullet X_{u}, \quad F=X_{u} \bullet X_{v}=X_{v} \bullet X_{u}, \quad G=X_{v} \bullet X_{v}
$$

Definition (1):

The coefficients of the first fundamental form of the surface patch $X: U \rightarrow \mathbb{R}^{3}$ are

$$
\begin{aligned}
& E(u, v)=X_{u}(u, v) \bullet X_{u}(u, v) \\
& F(u, v)=X_{u}(u, v) \bullet X_{v}(u, v)=X_{v}(u, v) \bullet X_{u}(u, v), \\
& G(u, v)=X_{v}(u, v) \bullet X_{v}(u, v)
\end{aligned}
$$

or, in short,

$$
E=X_{u} \bullet X_{u}, \quad F=X_{u} \bullet X_{v}=X_{v} \bullet X_{u}, \quad G=X_{v} \bullet X_{v}
$$

The first fundamental form of X is

$$
I=E\left(u^{\prime}\right)^{2}+2 F u^{\prime} v^{\prime}+G\left(v^{\prime}\right)^{2}
$$

or

$$
I=\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right)
$$

Note:

The first fundamental form is an impartment tools which allows us to make measurements on the surface (lengths of curves, angles of tangent vectors, areas of regions).

Examples

Example (1):

Let $X: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by $X(u, v)=(u, v, 0)$. Compute the first fundamental form of the surface X.

Examples

Example (2):

Let $X: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by $X(u, v)=(\cos u, \sin u, v)$. Compute the first fundamental form of the surface X.

Proposition (1):

Using the coefficients of the first fundamental form we can rewrite the formula for the speed

$$
\left|\alpha^{\prime}\right|^{2}=\left(u^{\prime}\right)^{2} E+2 u^{\prime} v^{\prime} F+\left(v^{\prime}\right)^{2} G .
$$

Proposition (1):

Using the coefficients of the first fundamental form we can rewrite the formula for the speed

$$
\left|\alpha^{\prime}\right|^{2}=\left(u^{\prime}\right)^{2} E+2 u^{\prime} v^{\prime} F+\left(v^{\prime}\right)^{2} G .
$$

We can also rewrite this formula using the matrix notation

$$
\left|\alpha^{\prime}\right|^{2}=\left(\begin{array}{ll}
u^{\prime} & v^{\prime}
\end{array}\right)\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right)\binom{u^{\prime}}{v^{\prime}}
$$

Length of Curves on Surfaces

Let $X: U \rightarrow \mathbb{R}^{3}$ be a surface patch. Let $\left(u_{0}, v_{0}\right) \in U$.
Proposition (2):
For a curve $\alpha(t)=X(u(t), v(t))$ on the surface X we have

$$
\left|\alpha^{\prime}\right|=\sqrt{\left.u^{\prime 2} E+2 u^{\prime} v^{\prime} F+{v^{\prime 2} G}_{2}=\sqrt{\left(u^{\prime}\right.} \begin{array}{c}
\\
v^{\prime}
\end{array}\right) \cdot\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right) \cdot\binom{u^{\prime}}{v^{\prime}}},
$$

where $u^{\prime}=u^{\prime}(t), v^{\prime}=v^{\prime}(t), E=E(u(t), v(t)), F=F(u(t), v(t))$, $G=G(u(t), v(t))$.

Length of Curves on Surfaces

Let $X: U \rightarrow \mathbb{R}^{3}$ be a surface patch. Let $\left(u_{0}, v_{0}\right) \in U$.
Proposition (2):
For a curve $\alpha(t)=X(u(t), v(t))$ on the surface X we have

$$
\left.\left|\alpha^{\prime}\right|=\sqrt{u^{\prime 2} E+2 u^{\prime} v^{\prime} F+{v^{\prime}}^{2} G}=\sqrt{\left(u^{\prime}\right.} \begin{array}{c}
\\
v^{\prime}
\end{array}\right) \cdot\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right) \cdot\binom{u^{\prime}}{v^{\prime}},
$$

where $u^{\prime}=u^{\prime}(t), v^{\prime}=v^{\prime}(t), E=E(u(t), v(t)), F=F(u(t), v(t))$, $G=G(u(t), v(t))$. The length of the curve α from $t=t_{1}$ to $t=t_{2}$ is

$$
\begin{aligned}
\int_{t_{1}}^{t_{2}}\left|\alpha^{\prime}\right| d t & =\int_{t_{1}}^{t_{2}} \sqrt{u^{\prime 2} E+2 u^{\prime} v^{\prime} F+v^{\prime 2} G} d t \\
& =\int_{t_{1}}^{t_{2}} \sqrt{\left(\begin{array}{ll}
u^{\prime} & v^{\prime}
\end{array}\right) \cdot\left(\begin{array}{cc}
E & F \\
F & G
\end{array}\right) \cdot\binom{u^{\prime}}{v^{\prime}}} d t .
\end{aligned}
$$

Length of Curves on Surfaces

Let $X: U \rightarrow \mathbb{R}^{3}$ be a surface patch. Let $\left(u_{0}, v_{0}\right) \in U$.
Proposition (2):
For a curve $\alpha(t)=X(u(t), v(t))$ on the surface X we have

$$
\left.\left|\alpha^{\prime}\right|=\sqrt{u^{\prime 2} E+2 u^{\prime} v^{\prime} F+{v^{\prime}}^{2} G}=\sqrt{\left(u^{\prime}\right.} \begin{array}{c}
\\
v^{\prime}
\end{array}\right) \cdot\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right) \cdot\binom{u^{\prime}}{v^{\prime}},
$$

where $u^{\prime}=u^{\prime}(t), v^{\prime}=v^{\prime}(t), E=E(u(t), v(t)), F=F(u(t), v(t))$, $G=G(u(t), v(t))$. The length of the curve α from $t=t_{1}$ to $t=t_{2}$ is

$$
\begin{aligned}
\int_{t_{1}}^{t_{2}}\left|\alpha^{\prime}\right| d t & =\int_{t_{1}}^{t_{2}} \sqrt{u^{\prime 2} E+2 u^{\prime} v^{\prime} F+v^{\prime 2} G} d t \\
& \left.=\int_{t_{1}}^{t_{2}} \sqrt{\left(u^{\prime}\right.} \begin{array}{ll}
v^{\prime}
\end{array}\right) \cdot\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right) \cdot\binom{u^{\prime}}{v^{\prime}}
\end{aligned} d t .
$$

Proof:

Examples

Example (3):

Let

$$
X(u, v)=\left(u-v, u+v, \frac{u^{2}+v^{2}}{2}\right) .
$$

Show that X defines a regular surface patch. Calculate the coefficients E, F, G of the first fundamental form for this surface. Write down an integral which gives the length of the curve $\gamma_{1}(t)=X(t, 1)$ on this surface from $t=1$ to $t=2$.

Angles between Curves on Surfaces

As we mention before, the first fundamental form can be used to compute angles between curves on surfaces.

Angles between Curves on Surfaces

As we mention before, the first fundamental form can be used to compute angles between curves on surfaces.

Definition (2):

Let $X: U \rightarrow \mathbb{R}^{3}$ be a regular surface patch and let $\alpha_{1}(t)=X\left(u_{1}(t), v_{1}(t)\right), \alpha_{2}(t)=X\left(u_{2}(t), v_{2}(t)\right)$ be curves on the surface X that intersect at a point $\alpha_{1}\left(t_{1}\right)=\alpha_{2}\left(t_{2}\right)$,

Angles between Curves on Surfaces

As we mention before, the first fundamental form can be used to compute angles between curves on surfaces.

Definition (2):

Let $X: U \rightarrow \mathbb{R}^{3}$ be a regular surface patch and let $\alpha_{1}(t)=X\left(u_{1}(t), v_{1}(t)\right), \alpha_{2}(t)=X\left(u_{2}(t), v_{2}(t)\right)$ be curves on the surface X that intersect at a point $\alpha_{1}\left(t_{1}\right)=\alpha_{2}\left(t_{2}\right)$, then the angle between the curves α_{1} and α_{2} at the point of their intersection $\alpha_{1}\left(t_{1}\right)=\alpha_{2}\left(t_{2}\right)$ is defined as the angle between their velocities $\alpha_{1}^{\prime}\left(t_{1}\right)$ and $\alpha_{2}^{\prime}\left(t_{2}\right)$.

Proposition (3):

Let $X: U \rightarrow \mathbb{R}^{3}$ be an injective regular surface patch and let $\alpha_{1}(t)=X\left(u_{1}(t), v_{1}(t)\right), \alpha_{2}(t)=X\left(u_{2}(t), v_{2}(t)\right)$ be curves on the surface X that intersect at a point $\alpha_{1}\left(t_{1}\right)=\alpha_{2}\left(t_{2}\right)$.

Proposition (3):

Let $X: U \rightarrow \mathbb{R}^{3}$ be an injective regular surface patch and let $\alpha_{1}(t)=X\left(u_{1}(t), v_{1}(t)\right), \alpha_{2}(t)=X\left(u_{2}(t), v_{2}(t)\right)$ be curves on the surface X that intersect at a point $\alpha_{1}\left(t_{1}\right)=\alpha_{2}\left(t_{2}\right)$. Let θ be the angle between the curves α_{1} and α_{2} at the point of their intersection $\alpha_{1}\left(t_{1}\right)=\alpha_{2}\left(t_{2}\right)$. Then
$\cos \theta=\frac{u_{1}^{\prime} u_{2}^{\prime} E+\left(u_{1}^{\prime} v_{2}^{\prime}+v_{1}^{\prime} u_{2}^{\prime}\right) F+v_{1}^{\prime} v_{2}^{\prime} G}{\left|\alpha_{1}^{\prime}\right| \cdot\left|\alpha_{2}^{\prime}\right|}=\frac{\left(\begin{array}{ll}u_{1}^{\prime} & v_{1}^{\prime}\end{array}\right)\left(\begin{array}{ll}E & F \\ F & G\end{array}\right)\binom{u_{2}^{\prime}}{v_{2}^{\prime}}}{\left|\alpha_{1}^{\prime}\right| \cdot\left|\alpha_{2}^{\prime}\right|}$,

Proposition (3):

Let $X: U \rightarrow \mathbb{R}^{3}$ be an injective regular surface patch and let $\alpha_{1}(t)=X\left(u_{1}(t), v_{1}(t)\right), \alpha_{2}(t)=X\left(u_{2}(t), v_{2}(t)\right)$ be curves on the surface X that intersect at a point $\alpha_{1}\left(t_{1}\right)=\alpha_{2}\left(t_{2}\right)$. Let θ be the angle between the curves α_{1} and α_{2} at the point of their intersection $\alpha_{1}\left(t_{1}\right)=\alpha_{2}\left(t_{2}\right)$. Then
$\cos \theta=\frac{u_{1}^{\prime} u_{2}^{\prime} E+\left(u_{1}^{\prime} v_{2}^{\prime}+v_{1}^{\prime} u_{2}^{\prime}\right) F+v_{1}^{\prime} v_{2}^{\prime} G}{\left|\alpha_{1}^{\prime}\right| \cdot\left|\alpha_{2}^{\prime}\right|}=\frac{\left(\begin{array}{ll}u_{1}^{\prime} & v_{1}^{\prime}\end{array}\right)\left(\begin{array}{ll}E & F \\ F & G\end{array}\right)\binom{u_{2}^{\prime}}{v_{2}^{\prime}}}{\left|\alpha_{1}^{\prime}\right| \cdot\left|\alpha_{2}^{\prime}\right|}$,
where $u_{i}^{\prime}, v_{i}^{\prime}$ are taken at t_{i} for $i=1,2$ and E, F, G are taken at the point of intersection of the curves. Note that $\left|\alpha_{i}^{\prime}\right|$ can be computed using the first fundamental form as explained in the previous slides.

Proposition (3):

Let $X: U \rightarrow \mathbb{R}^{3}$ be an injective regular surface patch and let $\alpha_{1}(t)=X\left(u_{1}(t), v_{1}(t)\right), \alpha_{2}(t)=X\left(u_{2}(t), v_{2}(t)\right)$ be curves on the surface X that intersect at a point $\alpha_{1}\left(t_{1}\right)=\alpha_{2}\left(t_{2}\right)$. Let θ be the angle between the curves α_{1} and α_{2} at the point of their intersection $\alpha_{1}\left(t_{1}\right)=\alpha_{2}\left(t_{2}\right)$. Then
$\cos \theta=\frac{u_{1}^{\prime} u_{2}^{\prime} E+\left(u_{1}^{\prime} v_{2}^{\prime}+v_{1}^{\prime} u_{2}^{\prime}\right) F+v_{1}^{\prime} v_{2}^{\prime} G}{\left|\alpha_{1}^{\prime}\right| \cdot\left|\alpha_{2}^{\prime}\right|}=\frac{\left(\begin{array}{ll}u_{1}^{\prime} & v_{1}^{\prime}\end{array}\right)\left(\begin{array}{ll}E & F \\ F & G\end{array}\right)\binom{u_{2}^{\prime}}{v_{2}^{\prime}}}{\left|\alpha_{1}^{\prime}\right| \cdot\left|\alpha_{2}^{\prime}\right|}$,
where $u_{i}^{\prime}, v_{i}^{\prime}$ are taken at t_{i} for $i=1,2$ and E, F, G are taken at the point of intersection of the curves. Note that $\left|\alpha_{i}^{\prime}\right|$ can be computed using the first fundamental form as explained in the previous slides. Proof:

Example (4):
Let

$$
X(u, v)=\left(\left(2+u^{2}\right) \cos v,\left(2+u^{2}\right) \sin v, u\right) .
$$

(1) Compute X_{u} and X_{v}.
(1) Show that X defines a regular surface.
(1) Compute the first fundamental form of the surface X.
(0) Write down, but do not evaluate, an integral which gives the length of the curve $\delta(t)=X(t, 0)$ on X from $t=-1$ to $t=2$.
(0) Calculate the cosine of the angle between the curves $\gamma_{1}(t)=X(0, t)$ and $\gamma_{2}(t)=X(2 t, t+\pi)$ on X at the point $X(0, \pi)=(-2,0,0)$ where they meet.

Thanks for listening.

