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Area of Surfaces

Definition (1):
Let X ∶ U → R3 be an injective regular surface patch. Let R be a
subset of U and X (R) the corresponding domain on the surface X .

Then, the area of the domain X (R) on the surface X is

Area(X (R)) = ∫
R

√
(EG − F 2)(u, v)du dv = ∫

R

√
det I (u, v)du dv .
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Remark:
We have seen that

∣Xu ×Xv ∣ =
√
EG − F 2.
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Examples

Example (1):
Let U ⊂ R2. Let X ∶ U → R3 be a surface given by
X (u, v) = (u, v ,uv). Show that X is a regular surface. Compute
the first fundamental form. Let R = {(u, v) ∈ R2 ∣ u2 + v2 ≤ 1} be
the unit disc. Then find area of the domain X (R) on the
surface X .
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Regularity Revisited

Proposition (1):
A surface patch X ∶ U → R3 is regular at (u, v) ∈ U if and only if
the determinant det I (u, v) = (EG − F 2)(u, v) is not equal to zero.
Proof
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Normal

Definition (2): Normal Vector
A normal vector to the surface X at a regular point X (u, v) is a
vector orthogonal to the tangent plane to X at the point X (u, v),
i.e. a multiple of the vector Xu(u, v) ×Xv(u, v).

Definition (3): Unit Normal Vector
A unit normal vector to the surface X at a regular point X (u, v)
is a normal vector to the surface X at the point X (u, v) of length
one.
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Remark: At each regular point X (u, v) there are two unit normal
vectors. To choose a unit normal vector N(u, v) at each
point X (u, v) in such a way that N(u, v) depends continuously
on (u, v) we can take

N(u, v) = (Xu ×Xv)(u, v)
∣(Xu ×Xv)(u, v)∣

.

At a regular point the three vectors Xu, Xv and N give a (not
orthonormal) basis.

Dr. Nasser Bin Turki Area of Surfaces, Normal Math 473 Introduction to Differential Geometry Lecture 22



Examples

Example (2):
Let U ⊂ R2. Let X ∶ U → R3 be a surface given by
X (u, v) = (u, v ,uv). Find a unit normal vector to the surface X at
a point X (u, v).
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Examples

Example (3): (Surface of Revolution)
Let α1, α2 ∶ R→ R be functions. Let X ∶ R × (−π,π)→ R3 be a
parametrization of the surface of revolution obtained by rotation of
the regular curve α(u) = (α1(u),0, α2(u))

X (u, v) = (α1(u) cos v , α1(u) sin v , α2(u)).

We shall assume that α1(u) is never zero and that X is injective.

(i) Prove that the surface patch X is regular.

(ii) Calculate the coefficients of the first fundamental form of X .

(iii) Find a unit normal vector to the surface X at a point X (u, v).
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Thanks for listening .
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