Sectional Curvature Math 473
 Introduction to Differential Geometry Lecture 27

Dr. Nasser Bin Turki
King Saud University
Department of Mathematics

December 1, 2018

Corollary (1):

The normal curvature of a curve on a surface only depends on the velocity of the curve, i.e. if γ_{1}, γ_{2} are two curves through a point on the surface with the same velocity at this point then their normal curvatures at this point coincide(equal).

Corollary (1):

The normal curvature of a curve on a surface only depends on the velocity of the curve, i.e. if γ_{1}, γ_{2} are two curves through a point on the surface with the same velocity at this point then their normal curvatures at this point coincide(equal).

Remark:

The sign of the normal curvature depends on the choice of the unit normal. If N is a unit normal on the surface then $-N$ is also a unit normal. The change of $\operatorname{sign} N \mapsto-N$ for the unit normal causes further sign changes: $(T, U, N) \mapsto(T,-U,-N), \kappa_{g} \mapsto-\kappa_{g}$, $\kappa_{n} \mapsto-\kappa_{n}, \kappa_{t} \mapsto \kappa_{t}$, I $\mapsto \mathrm{I}$, II $\mapsto-\mathrm{II}$.

sectional curvature

Definition (1):

The sectional curvature of the surface X at the point $X\left(u_{0}, v_{0}\right)$ in the direction of the tangent vector $x \cdot X_{u}\left(u_{0}, v_{0}\right)+y \cdot X_{v}\left(u_{0}, v_{0}\right)$, $x, y \in \mathbb{R}$, is given by

sectional curvature

Definition (1):

The sectional curvature of the surface X at the point $X\left(u_{0}, v_{0}\right)$ in the direction of the tangent vector $x \cdot X_{u}\left(u_{0}, v_{0}\right)+y \cdot X_{v}\left(u_{0}, v_{0}\right)$, $x, y \in \mathbb{R}$, is given by
$\kappa\left(x \cdot X_{u}+y \cdot X_{v}\right)=\frac{x^{2} \cdot e+2 x y \cdot f+y^{2} \cdot g}{x^{2} \cdot E+2 x y \cdot F+y^{2} \cdot G}=\frac{\left(\begin{array}{ll}x & y\end{array}\right) \cdot\left(\begin{array}{ll}e & f \\ f & g\end{array}\right) \cdot\binom{x}{y}}{\left(\begin{array}{ll}x & y\end{array}\right) \cdot\left(\begin{array}{ll}E & F \\ F & G\end{array}\right) \cdot\binom{x}{y}}$.

Remark:

For a curve $\gamma(t)=X(u(t), v(t))$ on the surface X the normal curvature κ_{n} of γ is equal to the sectional curvature of X in the direction of the tangent vector $\gamma^{\prime}=u^{\prime} \cdot X_{u}+v^{\prime} \cdot X_{v}$.

Examples

Example (1):

We consider the cylinder $X(u, v)=(\cos u, \sin u, v)$.
The first and the second fundamental forms are

$$
\mathrm{I}(u, v)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \mathrm{II}(u, v)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right) .
$$

What is the range of possible values of the sectional curvature

$$
\kappa(x, y):=\kappa\left(x \cdot X_{u}+y \cdot X_{v}\right)=\frac{x^{2} \cdot e+2 x y \cdot f+y^{2} \cdot g}{x^{2} \cdot E+2 x y \cdot F+y^{2} \cdot G}
$$

what are the maxima and the minima?

Proposition (1):

Let I and II be the matrices of the first and second fundamental form respectively at a point p on the surface X.

Proposition (1):

Let I and II be the matrices of the first and second fundamental form respectively at a point p on the surface X. The extrema of the sectional curvature $\kappa\left(x \cdot X_{u}+y \cdot X_{v}\right)$ at the point p occur at $x \cdot X_{u}+y \cdot X_{v}$ such that the vector $\binom{x}{y}$ is an eigenvector of the matrix $\mathrm{I}^{-1} \cdot \mathrm{II}$. The extremal values of the sectional curvature $\kappa\left(x \cdot X_{u}+y \cdot X_{v}\right)$ are equal to the corresponding eigenvalues of the matrix I^{-1}. II.

Proposition (1):

Let I and II be the matrices of the first and second fundamental form respectively at a point p on the surface X. The extrema of the sectional curvature $\kappa\left(x \cdot X_{u}+y \cdot X_{v}\right)$ at the point p occur at $x \cdot X_{u}+y \cdot X_{v}$ such that the vector $\binom{x}{y}$ is an eigenvector of the matrix $\mathrm{I}^{-1} \cdot \mathrm{II}$. The extremal values of the sectional curvature $\kappa\left(x \cdot X_{u}+y \cdot X_{v}\right)$ are equal to the corresponding eigenvalues of the matrix I^{-1}. II.
Proof

Remark:

 $\operatorname{det} \mathrm{I}=E G-F^{2}=\left|X_{u} \times X_{v}\right|^{2} \neq 0$ for a regular surface patch.
Remark:

The matrix $\mathrm{I}=\left(\begin{array}{ll}E & F \\ F & G\end{array}\right)$ is invertible since
$\operatorname{det} \mathrm{I}=E G-F^{2}=\left|X_{u} \times X_{v}\right|^{2} \neq 0$ for a regular surface patch.
Note:
The sectional curvature is the same along any line $\{r \cdot(x, y), r \neq 0\}$ since

$$
\begin{aligned}
p(r x, r y) & =(r x)^{2} \cdot e+2(r x)(r y) \cdot f+(r y)^{2} \cdot g \\
& =r^{2} \cdot\left(x^{2} \cdot e+2 x y \cdot f+y^{2} \cdot g\right)=r^{2} \cdot p(x, y)
\end{aligned}
$$

and similarly $q(r x, r y)=r^{2} \cdot q(x, y)$, therefore

$$
\begin{aligned}
\kappa(r x, r y) & =\frac{p(r x, r y)}{q(r x, r y)} \\
& =\frac{r^{2} \cdot p(x, y)}{r^{2} \cdot q(x, y)}=\frac{p(x, y)}{q(x, y)}=\kappa(x, y)
\end{aligned}
$$

Recall:

Let A be a (2×2)-matrix.

Recall:

Let A be a (2×2)-matrix.
An eigenvector of A is a vector $v \in \mathbb{C}^{2}$ such that $A \cdot v=\lambda \cdot v$ for some $\lambda \in \mathbb{C}$.

Recall:

Let A be a (2×2)-matrix.
An eigenvector of A is a vector $v \in \mathbb{C}^{2}$ such that $A \cdot v=\lambda \cdot v$ for some $\lambda \in \mathbb{C}$.

An eigenvalue of A is $\lambda \in \mathbb{C}$ such that $A \cdot v=\lambda \cdot v$ for some vector $v \in \mathbb{C}^{2}, v \neq 0$.

Theorem (1):

Let I resp. II be the matrices of the first resp. second fundamental form at a point p on the surface X. Then the matrix I^{-1}. II has real eigenvalues κ_{1} and κ_{2} which coincide with the global maximum and the global minimum of the sectional curvature over all non-zero tangent vectors. The following two cases are possible:

Theorem (1):

Let I resp. II be the matrices of the first resp. second fundamental form at a point p on the surface X. Then the matrix $I^{-1} \cdot$ II has real eigenvalues κ_{1} and κ_{2} which coincide with the global maximum and the global minimum of the sectional curvature over all non-zero tangent vectors. The following two cases are possible:
(1) If $\kappa_{1} \neq \kappa_{2}$ then if (a, b) is a non-zero eigenvector of the matrix $\mathrm{I}^{-1} \cdot \mathrm{II}$ to the eigenvalue κ_{i} then $\kappa\left(a \cdot X_{u}+b \cdot X_{v}\right)=\kappa_{i}$.
(2) If $\kappa_{1}=\kappa_{2}$ then the sectional curvature is constant and equal to $\kappa_{1}=\kappa_{2}$ and is achieved in any direction. In this case the point is called umbilic.

Theorem (1):

Let I resp. II be the matrices of the first resp. second fundamental form at a point p on the surface X. Then the matrix $I^{-1} \cdot$ II has real eigenvalues κ_{1} and κ_{2} which coincide with the global maximum and the global minimum of the sectional curvature over all non-zero tangent vectors. The following two cases are possible:
(1) If $\kappa_{1} \neq \kappa_{2}$ then if (a, b) is a non-zero eigenvector of the matrix $\mathrm{I}^{-1} \cdot \mathrm{II}$ to the eigenvalue κ_{i} then $\kappa\left(a \cdot X_{u}+b \cdot X_{v}\right)=\kappa_{i}$.
(2) If $\kappa_{1}=\kappa_{2}$ then the sectional curvature is constant and equal to $\kappa_{1}=\kappa_{2}$ and is achieved in any direction. In this case the point is called umbilic.

Example (2): All points on a sphere are umbilic. On the paraboloid $X(u, v)=\left(u, v, u^{2}+v^{2}\right)$ the point $X(0,0)=(0,0,0)$ is umbilic.

Theorem (1):

Let I resp. II be the matrices of the first resp. second fundamental form at a point p on the surface X. Then the matrix $I^{-1} \cdot$ II has real eigenvalues κ_{1} and κ_{2} which coincide with the global maximum and the global minimum of the sectional curvature over all non-zero tangent vectors. The following two cases are possible:
(1) If $\kappa_{1} \neq \kappa_{2}$ then if (a, b) is a non-zero eigenvector of the matrix $\mathrm{I}^{-1} \cdot \mathrm{II}$ to the eigenvalue κ_{i} then $\kappa\left(a \cdot X_{u}+b \cdot X_{v}\right)=\kappa_{i}$.
(2) If $\kappa_{1}=\kappa_{2}$ then the sectional curvature is constant and equal to $\kappa_{1}=\kappa_{2}$ and is achieved in any direction. In this case the point is called umbilic.

Example (2): All points on a sphere are umbilic. On the paraboloid $X(u, v)=\left(u, v, u^{2}+v^{2}\right)$ the point $X(0,0)=(0,0,0)$ is umbilic.

Proof

Thanks for listening.

