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Corollary (1):
The normal curvature of a curve on a surface only depends on the
velocity of the curve, i.e. if γ1, γ2 are two curves through a point
on the surface with the same velocity at this point then their
normal curvatures at this point coincide(equal).

Remark:
The sign of the normal curvature depends on the choice of the unit
normal. If N is a unit normal on the surface then −N is also a unit
normal. The change of sign N ↦ −N for the unit normal causes
further sign changes: (T ,U,N)↦ (T ,−U,−N), κg ↦ −κg ,
κn ↦ −κn, κt ↦ κt , I↦ I, II↦ −II.
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sectional curvature

Definition (1):
The sectional curvature of the surface X at the point X (u0, v0)

in the direction of the tangent vector x ⋅Xu(u0, v0) + y ⋅Xv(u0, v0),
x , y ∈ R, is given by

κ(x ⋅Xu+y ⋅Xv) =
x2
⋅ e + 2xy ⋅ f + y2

⋅ g

x2
⋅ E + 2xy ⋅ F + y2

⋅G
=

(x y) ⋅ (
e f
f g

) ⋅ (
x
y
)

(x y) ⋅ (
E F
F G

) ⋅ (
x
y
)

.
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Remark:
For a curve γ(t) = X (u(t), v(t)) on the surface X the normal
curvature κn of γ is equal to the sectional curvature of X in the
direction of the tangent vector γ′ = u′ ⋅Xu + v

′
⋅Xv .
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Examples

Example (1):
We consider the cylinder X (u, v) = (cosu, sinu, v).
The first and the second fundamental forms are

I(u, v) = (
1 0
0 1
) , II(u, v) = (

−1 0
0 0

) .
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Maxima and Minima of the Sectional Curvature

What is the range of possible values of the sectional curvature

κ(x , y) ∶= κ(x ⋅Xu + y ⋅Xv) =
x2
⋅ e + 2xy ⋅ f + y2

⋅ g

x2
⋅ E + 2xy ⋅ F + y2

⋅G
,

what are the maxima and the minima?
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Proposition (1):
Let I and II be the matrices of the first and second fundamental
form respectively at a point p on the surface X .

The extrema of the
sectional curvature κ(x ⋅Xu + y ⋅Xv) at the point p occur

at x ⋅Xu + y ⋅Xv such that the vector (
x
y
) is an eigenvector of the

matrix I−1
⋅ II. The extremal values of the sectional

curvature κ(x ⋅Xu + y ⋅Xv) are equal to the corresponding
eigenvalues of the matrix I−1

⋅ II.
Proof
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Remark:

The matrix I = (
E F
F G

) is invertible since

det I = EG − F 2
= ∣Xu ×Xv ∣

2
≠ 0 for a regular surface patch.

Note:
The sectional curvature is the same along any line
{r ⋅ (x , y), r ≠ 0} since

p(rx , ry) =(rx)2 ⋅ e + 2(rx)(ry) ⋅ f + (ry)2 ⋅ g

=r2
⋅ (x2

⋅ e + 2xy ⋅ f + y2
⋅ g) = r2

⋅ p(x , y)

and similarly q(rx , ry) = r2
⋅ q(x , y), therefore

κ(rx , ry) =
p(rx , ry)

q(rx , ry)

=
r2
⋅ p(x , y)

r2
⋅ q(x , y)

=
p(x , y)

q(x , y)
= κ(x , y).
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Recall:
Let A be a (2 × 2)-matrix.

An eigenvector of A is a vector v ∈ C2 such that A ⋅ v = λ ⋅ v for
some λ ∈ C.

An eigenvalue of A is λ ∈ C such that A ⋅ v = λ ⋅ v for some
vector v ∈ C2, v ≠ 0.
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Theorem (1):
Let I resp. II be the matrices of the first resp. second fundamental
form at a point p on the surface X . Then the matrix I−1

⋅ II has real
eigenvalues κ1 and κ2 which coincide with the global maximum
and the global minimum of the sectional curvature over all
non-zero tangent vectors. The following two cases are possible:

1) If κ1 ≠ κ2 then if (a,b) is a non-zero eigenvector of the
matrix I−1

⋅ II to the eigenvalue κi then κ(a ⋅Xu + b ⋅Xv) = κi .

2) If κ1 = κ2 then the sectional curvature is constant and equal
to κ1 = κ2 and is achieved in any direction. In this case the
point is called umbilic.

Example (2): All points on a sphere are umbilic. On the
paraboloid X (u, v) = (u, v ,u2

+ v2
) the point X (0,0) = (0,0,0) is

umbilic.
Proof
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Thanks for listening .
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