Sectional Curvature Math 473 Introduction to Differential Geometry Lecture 27

Dr. Nasser Bin Turki

King Saud University Department of Mathematics

December 1, 2018

Corollary (1):

The normal curvature of a curve on a surface only depends on the velocity of the curve, i.e. if γ_1 , γ_2 are two curves through a point on the surface with the same velocity at this point then their normal curvatures at this point coincide(equal).

Corollary (1):

The normal curvature of a curve on a surface only depends on the velocity of the curve, i.e. if γ_1 , γ_2 are two curves through a point on the surface with the same velocity at this point then their normal curvatures at this point coincide(equal).

Remark:

The sign of the normal curvature depends on the choice of the unit normal. If N is a unit normal on the surface then -N is also a unit normal. The change of sign $N \mapsto -N$ for the unit normal causes further sign changes: $(T, U, N) \mapsto (T, -U, -N)$, $\kappa_g \mapsto -\kappa_g$, $\kappa_n \mapsto -\kappa_n$, $\kappa_t \mapsto \kappa_t$, $I \mapsto I$, $II \mapsto -II$.

向下 イヨト イヨト ニヨ

Definition (1):

The **sectional curvature** of the surface X at the point $X(u_0, v_0)$ in the direction of the tangent vector $x \cdot X_u(u_0, v_0) + y \cdot X_v(u_0, v_0)$, $x, y \in \mathbb{R}$, is given by

4 E 6 4 E 6

Definition (1):

The **sectional curvature** of the surface X at the point $X(u_0, v_0)$ in the direction of the tangent vector $x \cdot X_u(u_0, v_0) + y \cdot X_v(u_0, v_0)$, $x, y \in \mathbb{R}$, is given by

$$\kappa(x \cdot X_u + y \cdot X_v) = \frac{x^2 \cdot e + 2xy \cdot f + y^2 \cdot g}{x^2 \cdot E + 2xy \cdot F + y^2 \cdot G} = \frac{\begin{pmatrix} x & y \end{pmatrix} \cdot \begin{pmatrix} e & f \\ f & g \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}}{\begin{pmatrix} x & y \end{pmatrix} \cdot \begin{pmatrix} E & F \\ F & G \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}}.$$

4 E 6 4 E 6

Remark:

For a curve $\gamma(t) = X(u(t), v(t))$ on the surface X the normal curvature κ_n of γ is equal to the sectional curvature of X in the direction of the tangent vector $\gamma' = u' \cdot X_u + v' \cdot X_v$.

Example (1):

We consider the cylinder $X(u, v) = (\cos u, \sin u, v)$. The first and the second fundamental forms are

$$I(u,v) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad II(u,v) = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}.$$

• • = • • = •

What is the range of possible values of the sectional curvature

$$\kappa(x,y) \coloneqq \kappa(x \cdot X_u + y \cdot X_v) = \frac{x^2 \cdot e + 2xy \cdot f + y^2 \cdot g}{x^2 \cdot E + 2xy \cdot F + y^2 \cdot G},$$

what are the maxima and the minima?

Proposition (1):

Let I and II be the matrices of the first and second fundamental form respectively at a point p on the surface X.

• • = • • = •

Proposition (1):

Let I and II be the matrices of the first and second fundamental form respectively at a point p on the surface X. The extrema of the sectional curvature $\kappa(x \cdot X_u + y \cdot X_v)$ at the point p occur at $x \cdot X_u + y \cdot X_v$ such that the vector $\begin{pmatrix} x \\ y \end{pmatrix}$ is an eigenvector of the matrix $I^{-1} \cdot II$. The extremal values of the sectional curvature $\kappa(x \cdot X_u + y \cdot X_v)$ are equal to the corresponding eigenvalues of the matrix $I^{-1} \cdot II$.

• • B • • B • B

Proposition (1):

Let I and II be the matrices of the first and second fundamental form respectively at a point p on the surface X. The extrema of the sectional curvature $\kappa(x \cdot X_u + y \cdot X_v)$ at the point p occur at $x \cdot X_u + y \cdot X_v$ such that the vector $\begin{pmatrix} x \\ y \end{pmatrix}$ is an eigenvector of the matrix $I^{-1} \cdot II$. The extremal values of the sectional curvature $\kappa(x \cdot X_u + y \cdot X_v)$ are equal to the corresponding eigenvalues of the matrix $I^{-1} \cdot II$. **Proof**

.

Remark:

The matrix $I = \begin{pmatrix} E & F \\ F & G \end{pmatrix}$ is invertible since det $I = EG - F^2 = |X_u \times X_v|^2 \neq 0$ for a regular surface patch.

Remark:

The matrix $I = \begin{pmatrix} E & F \\ F & G \end{pmatrix}$ is invertible since det $I = EG - F^2 = |X_u \times X_v|^2 \neq 0$ for a regular surface patch.

Note:

The sectional curvature is the same along any line $\{r \cdot (x, y), r \neq 0\}$ since

$$p(rx, ry) = (rx)^{2} \cdot e + 2(rx)(ry) \cdot f + (ry)^{2} \cdot g$$

= $r^{2} \cdot (x^{2} \cdot e + 2xy \cdot f + y^{2} \cdot g) = r^{2} \cdot p(x, y)$

and similarly $q(rx, ry) = r^2 \cdot q(x, y)$, therefore

$$\kappa(rx, ry) = \frac{p(rx, ry)}{q(rx, ry)}$$
$$= \frac{r^2 \cdot p(x, y)}{r^2 \cdot q(x, y)} = \frac{p(x, y)}{q(x, y)} = \kappa(x, y).$$

Recall: Let A be a (2×2) -matrix.

Recall: Let A be a (2×2) -matrix.

An eigenvector of A is a vector $v \in \mathbb{C}^2$ such that $A \cdot v = \lambda \cdot v$ for some $\lambda \in \mathbb{C}$.

4 3 6 4 3 6

Recall: Let A be a (2×2) -matrix.

An eigenvector of A is a vector $v \in \mathbb{C}^2$ such that $A \cdot v = \lambda \cdot v$ for some $\lambda \in \mathbb{C}$.

An eigenvalue of A is $\lambda \in \mathbb{C}$ such that $A \cdot v = \lambda \cdot v$ for some vector $v \in \mathbb{C}^2$, $v \neq 0$.

Let I resp. II be the matrices of the first resp. second fundamental form at a point p on the surface X. Then the matrix $I^{-1} \cdot II$ has real eigenvalues κ_1 and κ_2 which coincide with the global maximum and the global minimum of the sectional curvature over all non-zero tangent vectors. The following two cases are possible:

Let I resp. II be the matrices of the first resp. second fundamental form at a point p on the surface X. Then the matrix $I^{-1} \cdot II$ has real eigenvalues κ_1 and κ_2 which coincide with the global maximum and the global minimum of the sectional curvature over all non-zero tangent vectors. The following two cases are possible:

- If $\kappa_1 \neq \kappa_2$ then if (a, b) is a non-zero eigenvector of the matrix $I^{-1} \cdot II$ to the eigenvalue κ_i then $\kappa(a \cdot X_u + b \cdot X_v) = \kappa_i$.
- **(a)** If $\kappa_1 = \kappa_2$ then the sectional curvature is constant and equal to $\kappa_1 = \kappa_2$ and is achieved in any direction. In this case the point is called **umbilic**.

Let I resp. II be the matrices of the first resp. second fundamental form at a point p on the surface X. Then the matrix $I^{-1} \cdot II$ has real eigenvalues κ_1 and κ_2 which coincide with the global maximum and the global minimum of the sectional curvature over all non-zero tangent vectors. The following two cases are possible:

- If $\kappa_1 \neq \kappa_2$ then if (a, b) is a non-zero eigenvector of the matrix $I^{-1} \cdot II$ to the eigenvalue κ_i then $\kappa(a \cdot X_u + b \cdot X_v) = \kappa_i$.
- **(a)** If $\kappa_1 = \kappa_2$ then the sectional curvature is constant and equal to $\kappa_1 = \kappa_2$ and is achieved in any direction. In this case the point is called **umbilic**.

Example (2): All points on a sphere are umbilic. On the paraboloid $X(u, v) = (u, v, u^2 + v^2)$ the point X(0, 0) = (0, 0, 0) is umbilic.

Let I resp. II be the matrices of the first resp. second fundamental form at a point p on the surface X. Then the matrix $I^{-1} \cdot II$ has real eigenvalues κ_1 and κ_2 which coincide with the global maximum and the global minimum of the sectional curvature over all non-zero tangent vectors. The following two cases are possible:

- If $\kappa_1 \neq \kappa_2$ then if (a, b) is a non-zero eigenvector of the matrix $I^{-1} \cdot II$ to the eigenvalue κ_i then $\kappa(a \cdot X_u + b \cdot X_v) = \kappa_i$.
- **(a)** If $\kappa_1 = \kappa_2$ then the sectional curvature is constant and equal to $\kappa_1 = \kappa_2$ and is achieved in any direction. In this case the point is called **umbilic**.

Example (2): All points on a sphere are umbilic. On the paraboloid $X(u, v) = (u, v, u^2 + v^2)$ the point X(0, 0) = (0, 0, 0) is umbilic.

Proof

Thanks for listening.

御 と く き と く き と

э