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Gauss Curvature

Definition (1):
Let κ1 and κ2 be the principal curvatures.
The Gauss curvature K of the surface X at a point p is the
product of the principal curvatures

K = κ1 ⋅ κ2.
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Mean Curvature

Definition (2):
Let κ1 and κ2 be the principal curvatures.
The mean curvature H of the surface X at a point p is the
average of the principal curvatures

H =
1

2
(κ1 + κ2).
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Remark:
A point is

i) elliptic if and only if K > 0,

ii) hyperbolic if and only if K < 0,

iii) parabolic if and only if K = 0,

where K is the Gauss curvature of X at the point, i.e. the product
of the principal curvatures.
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Definition (2):
A surface patch is called minimal if it has mean curvature H = 0.

Remark:
Minimal surfaces often have the property of having the smallest
area for a surface with a given boundary.
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Recall
Let

A = (
a b
c d

)

be a (2 × 2)-matrix. Then, the trace of A is

trace(A) = a + d

Proposition (1):
Let

A = (
a b
c d

)

be a (2 × 2)-matrix. Let λ1 and λ2 be the eigenvalues of the
matrix A. Then

λ1 + λ2 = trace(A) = a + d , λ1 ⋅ λ2 = det(A) = ad − bc.
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Proposition (2):
Let X ∶ U → R3 be a regular surface patch and let p be a point on
the surface X . Let

I = (
E F
F G

) and II = (
e f
f g

)

be the matrices of the first and second fundamental form
respectively at the point p.

Then the Gauss curvature K and the
mean curvature H of the surface X at the point p satisfy the
following equations:

K = det(I−1
⋅ II) =

det(II)

det(I)
=

eg − f 2

EG − F 2
,

H =
trace(I−1 ⋅ II)

2
=
eG + gE − 2fF

2(EG − F 2)
.

Proof:
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Examples

Example (1):
Let X ∶ R2 → R3 be given by X (u, v) = (u, v ,uv). Compute the
Gauss curvature and the mean curvature this surface at the point
(0,0)? Is a typical point of the surface hyperbolic, parabolic or
elliptic?
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Examples

Example (2):
Show that the Gauss curvature and the mean curvature of the
surface

X (u, v) = (u + v ,u − v ,uv)

at u = v = 1 are

K = −
1

16
, H =

1

8
√

2
.

Is a typical point of the surface hyperbolic, parabolic or elliptic?
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Thanks for listening .
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