Gauss Curvature and Mean Curvature Math 473
 Introduction to Differential Geometry Lecture 29

Dr. Nasser Bin Turki
King Saud University
Department of Mathematics

December 1, 2018

Gauss Curvature

Definition (1):

Let κ_{1} and κ_{2} be the principal curvatures.
The Gauss curvature K of the surface X at a point p is the product of the principal curvatures

$$
K=\kappa_{1} \cdot \kappa_{2}
$$

Mean Curvature

Definition (2):

Let κ_{1} and κ_{2} be the principal curvatures.
The mean curvature H of the surface X at a point p is the average of the principal curvatures

$$
H=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}\right) .
$$

Remark:

A point is
(1) elliptic if and only if $K>0$,
(1) hyperbolic if and only if $K<0$,
(1) parabolic if and only if $K=0$, where K is the Gauss curvature of X at the point, i.e. the product of the principal curvatures.

Definition (2):

A surface patch is called minimal if it has mean curvature $H=0$.

Definition (2):

A surface patch is called minimal if it has mean curvature $H=0$.

Remark:

Minimal surfaces often have the property of having the smallest area for a surface with a given boundary.

Recall

Let

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

be a (2×2)-matrix. Then, the trace of A is

$$
\operatorname{trace}(A)=a+d
$$

Recall

Let

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

be a (2×2)-matrix. Then, the trace of A is

$$
\operatorname{trace}(A)=a+d
$$

Proposition (1):

Let

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

be a (2×2)-matrix. Let λ_{1} and λ_{2} be the eigenvalues of the matrix A. Then

$$
\lambda_{1}+\lambda_{2}=\operatorname{trace}(A)=a+d, \quad \lambda_{1} \cdot \lambda_{2}=\operatorname{det}(A)=a d-b c .
$$

Proposition (2):

Let $X: U \rightarrow \mathbb{R}^{3}$ be a regular surface patch and let p be a point on the surface X. Let

$$
\mathrm{I}=\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right) \quad \text { and } \quad \mathrm{II}=\left(\begin{array}{ll}
e & f \\
f & g
\end{array}\right)
$$

be the matrices of the first and second fundamental form respectively at the point p.

Proposition (2):

Let $X: U \rightarrow \mathbb{R}^{3}$ be a regular surface patch and let p be a point on the surface X. Let

$$
\mathrm{I}=\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right) \quad \text { and } \quad \mathrm{II}=\left(\begin{array}{ll}
e & f \\
f & g
\end{array}\right)
$$

be the matrices of the first and second fundamental form respectively at the point p. Then the Gauss curvature K and the mean curvature H of the surface X at the point p satisfy the following equations:

$$
\begin{aligned}
& K=\operatorname{det}\left(\mathrm{I}^{-1} \cdot \mathrm{II}\right)=\frac{\operatorname{det}(\mathrm{II})}{\operatorname{det}(\mathrm{I})}=\frac{e g-f^{2}}{E G-F^{2}}, \\
& H=\frac{\operatorname{trace}\left(\mathrm{I}^{-1} \cdot \mathrm{II}\right)}{2}=\frac{e G+g E-2 f F}{2\left(E G-F^{2}\right)} .
\end{aligned}
$$

Proposition (2):

Let $X: U \rightarrow \mathbb{R}^{3}$ be a regular surface patch and let p be a point on the surface X. Let

$$
\mathrm{I}=\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right) \quad \text { and } \quad \mathrm{II}=\left(\begin{array}{ll}
e & f \\
f & g
\end{array}\right)
$$

be the matrices of the first and second fundamental form respectively at the point p. Then the Gauss curvature K and the mean curvature H of the surface X at the point p satisfy the following equations:

$$
\begin{aligned}
& K=\operatorname{det}\left(\mathrm{I}^{-1} \cdot \mathrm{II}\right)=\frac{\operatorname{det}(\mathrm{II})}{\operatorname{det}(\mathrm{I})}=\frac{e g-f^{2}}{E G-F^{2}}, \\
& H=\frac{\operatorname{trace}\left(\mathrm{I}^{-1} \cdot \mathrm{II}\right)}{2}=\frac{e G+g E-2 f F}{2\left(E G-F^{2}\right)} .
\end{aligned}
$$

Proof:

Examples

Example (1):

Let $X: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by $X(u, v)=(u, v, u v)$. Compute the Gauss curvature and the mean curvature this surface at the point $(0,0)$? Is a typical point of the surface hyperbolic, parabolic or elliptic?

Examples

Example (2):

Show that the Gauss curvature and the mean curvature of the surface

$$
X(u, v)=(u+v, u-v, u v)
$$

at $u=v=1$ are

$$
K=-\frac{1}{16}, \quad H=\frac{1}{8 \sqrt{2}} .
$$

Is a typical point of the surface hyperbolic, parabolic or elliptic?

Thanks for listening.

