Curvature of Space Curves Math 473 Introduction to Differential Geometry Lecture 5

Dr. Nasser Bin Turki

King Saud University Department of Mathematics

September 15, 2018

Dr. Nasser Bin Turki Curvature of Space Curves Math 473 Introduction to Differentia

Defnation (1):

Let $\alpha : I \mapsto \mathbb{R}^3$ be a regular parametrised space curve with the unit tangent vector T. The curvature $\kappa(t)$ is the non-negative real number given by

Defnation (1):

Let $\alpha : I \mapsto \mathbb{R}^3$ be a regular parametrised space curve with the unit tangent vector T. The curvature $\kappa(t)$ is the non-negative real number given by

$$\kappa(t)=\frac{|T'(t)|}{|\alpha'(t)|}.$$

• • = • • = •

Example(1): Find the Curvature of the curve $\alpha : \mathbb{R} \mapsto \mathbb{R}^3, \alpha(t) = (t, t, t).$

Example(1): Find the Curvature of the curve $\alpha : \mathbb{R} \mapsto \mathbb{R}^3, \alpha(t) = (t, t, t).$

The curvature of straight line is zero.

Example(2): Find the Curvature of helix $\alpha : \mathbb{R} \mapsto \mathbb{R}^3$, $\alpha(t) = (\cos t, \sin t, 2t)$.

★ ∃ ► < ∃ ►</p>

Example(2): Find the Curvature of helix $\alpha : \mathbb{R} \mapsto \mathbb{R}^3$, $\alpha(t) = (\cos t, \sin t, 2t)$.

The curvature of the helix is constant. This is in line with the observation that the helix 'looks the same' at each point.

Example(3): Find the Curvature of twisted cubic $\alpha : \mathbb{R} \mapsto \mathbb{R}^3, \alpha(t) = (t, t^2, t^3).$

-

< ∃ →

Example(3): Find the Curvature of twisted cubic $\alpha : \mathbb{R} \mapsto \mathbb{R}^3, \alpha(t) = (t, t^2, t^3).$

To compute the curvature according to the definition we would need to differentiate T(t). Instead, we will now discuss a formula that will allow us to compute the curvature of complicated curves more efficiently.

Proposition (1):

For a regular parametrised space curve $\alpha:I\mapsto \mathbb{R}^3$ the curvature κ can be computed as

$$\kappa = \frac{|\alpha' \times \alpha''|}{|\alpha'|^3}$$

()

Proposition (1):

For a regular parametrised space curve $\alpha:I\mapsto \mathbb{R}^3$ the curvature κ can be computed as

$$\kappa = \frac{|\alpha' \times \alpha''|}{|\alpha'|^3}$$

Proof Proof of this Proposition will be given later.

Back to Example 3 The Curvature of twisted cubic $\alpha(t) = (t, t^2, t^3)$ can be computed as

白 ト イヨ ト イヨ ト

-

Thanks for listening.

< ロ > < 回 > < 回 > < 回 > < 回 >

э