Curvature of Space Curves Math 473
 Introduction to Differential Geometry Lecture 5

Dr. Nasser Bin Turki
King Saud University
Department of Mathematics

September 15, 2018

Curvature

Defnation (1):

Let $\alpha: I \mapsto \mathbb{R}^{3}$ be a regular parametrised space curve with the unit tangent vector T. The curvature $\kappa(t)$ is the non-negative real number given by

Curvature

Defnation (1):

Let $\alpha: I \mapsto \mathbb{R}^{3}$ be a regular parametrised space curve with the unit tangent vector T. The curvature $\kappa(t)$ is the non-negative real number given by

$$
\kappa(t)=\frac{\left|T^{\prime}(t)\right|}{\left|\alpha^{\prime}(t)\right|}
$$

Example(1): Find the Curvature of the curve

 $\alpha: \mathbb{R} \mapsto \mathbb{R}^{3}, \alpha(t)=(t, t, t)$.

Example(1): Find the Curvature of the curve $\alpha: \mathbb{R} \mapsto \mathbb{R}^{3}, \alpha(t)=(t, t, t)$.

The curvature of straight line is zero.

Example(2): Find the Curvature of helix

 $\alpha: \mathbb{R} \mapsto \mathbb{R}^{3}, \alpha(t)=(\cos t, \sin t, 2 t)$.

Example(2): Find the Curvature of helix $\alpha: \mathbb{R} \mapsto \mathbb{R}^{3}, \alpha(t)=(\cos t, \sin t, 2 t)$.

The curvature of the helix is constant. This is in line with the observation that the helix 'looks the same' at each point.

Example(3): Find the Curvature of twisted cubic $\alpha: \mathbb{R} \mapsto \mathbb{R}^{3}, \alpha(t)=\left(t, t^{2}, t^{3}\right)$.

Example(3): Find the Curvature of twisted cubic $\alpha: \mathbb{R} \mapsto \mathbb{R}^{3}, \alpha(t)=\left(t, t^{2}, t^{3}\right)$.

To compute the curvature according to the definition we would need to differentiate $T(t)$. Instead, we will now discuss a formula that will allow us to compute the curvature of complicated curves more efficiently.

A formule of the curvature

Proposition (1):

For a regular parametrised space curve $\alpha: I \mapsto \mathbb{R}^{3}$ the curvature κ can be computed as

$$
\kappa=\frac{\left|\alpha^{\prime} \times \alpha^{\prime \prime}\right|}{\left|\alpha^{\prime}\right|^{3}}
$$

A formule of the curvature

Proposition (1):

For a regular parametrised space curve $\alpha: / \mapsto \mathbb{R}^{3}$ the curvature κ can be computed as

$$
\kappa=\frac{\left|\alpha^{\prime} \times \alpha^{\prime \prime}\right|}{\left|\alpha^{\prime}\right|^{3}} .
$$

Proof Proof of this Proposition will be given later.

Back to Example 3 The Curvature of twisted cubic $\alpha(t)=\left(t, t^{2}, t^{3}\right)$ can be computed as

Thanks for listening.

