Introduction to Bacteria: Classification, Morphology and Structures
Introduction

• Prokaryotic organisms.
• Vary in sizes, measure approximately 0.1 to 10.0 μm
• Widely distributed. It can be found in soil, air, water, and living bodies.
• Some bacteria can cause diseases for human, animals and plants.
• Some bacteria are harmless (i.e. live in human bodies as normal flora)
Size of Bacteria

- Unit of measurement in bacteriology is the micron (micrometre, µm)
- Bacteria of medical importance (0.2 – 1.5 µm) in diameter (3 – 5 µm) in length
Bacterial Morphology

- Rods – bacilli
- Coccoid shaped
- spirilla
Bacterial Morphology

- Cocci – spherical / oval shaped major groups
- Bacilli – rod shaped
- Vibrios – comma shaped
- Spirilla – rigid spiral forms
- Spirochetes – flexible spiral forms
- Actinomycetes – branching filamentous bacteria
- Mycoplasmas – lack cell wall
Reproduction

- Binary fission
Bacterial Structure

A. The envelope:
 1. Cytoplasmic membrane
 2. Cell wall (Peptidoglycan)
 3. Extracellular polysaccharides: capsules, microcapsules and loose slime
 4. Appendages
 5. Antigenic variation

B. Cytoplasmic components
Bacterial Structure

1. Cytoplasmic membrane
Bacterial Structure

2. Cell wall
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Gram-negative Bacteria</th>
<th>Gram-positive Bacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall Structure</td>
<td>They have a thin lipopolysaccharide exterior cell wall.</td>
<td>The peptidoglycan layer is thick</td>
</tr>
<tr>
<td>Effect of Dye</td>
<td>do not retain the crystal violet dye, and react only with a counter-stain, generally stain pink.</td>
<td>retain the crystal violet dye, and change into purple during staining identification.</td>
</tr>
</tbody>
</table>
| Effect of Antibiotics | • resistant to penicillin
• contain an endotoxin called LPS | susceptible to the enzyme lysozyme and to penicillin |
| Flagellum | If present, the flagellum has four supporting rings, namely 'L' ring, 'P' ring, 'M' ring, and 'S' ring. | The flagellum has two supporting rings, in the peptidoglycan layer, and in the plasma membrane. |
| Teichoic Acids | absent. | present. |
| Liproproteins | They are attached to the polysaccharide backbone. | absent. |
| Periplasmic Space | present. | absent. |
Bacterial Structure

Gram Positive

1. Fixation
2. Crystal violet
3. Iodine treatment
4. Decolorization
5. Counter stain (safarin)

Gram Negative
Bacterial Structure

3. Extracellular polysaccharides:
 – Capsules
 – Microcapsules
 – Loose slime

4. Appendages
 – Flagella
 – Pili

5. Antigenic variation
 – important in virulence & immunity
Bacterial Structure

B. Cytoplasmic components:

1. Cytoplasm
 - Contains chromosomal DNA, ribosomes and various type of nutritional storage granules.
 - Contains no organelles

2. Nuclear material (nucleoid or nuclear body)
 - Consist of one long, double-stranded, circular DNA molecule
 - R factor
 - binary fission
Bacterial Structure

B. Cytoplasmic components:

3. Ribosomes
 - function as the active center of protein synthesis

4. Cytoplasmic inclusion
 - Sources of stored energy
SPORES AND SPORULATION

• Highly resistant resting stages formed during adverse environment (depletion of nutrients)
• Endospores
 – Spore germination

• Medical significance of sporulation
 – Bacillus species
 – Clostridium species
Bacterial classification

Bacteria

- G+
 - Rod
 - Cocci
 - + spore -

- G-
 - Rod
 - Cocci
 - Spiral

- AF
- WL
- IC

- + +/- -O₂
Bacterial classification

A. Wall structure
 1. Gram +
 • *Staphylococcus, Streptococcus, Clostridium, Bacillus*
 2. Gram -
 • Enteric, respiratory and others
 3. Acid-fast
 • *Mycobacterium*
 4. Wall-less
 • *Mycoplasma*

B. Unusual
 – Obligate intracellular
 • *Rickettsia, Chlamydia*
Bacterial classification

C. Cell morphology

1. Shapes
 • Rod
 • Cocci
 • Spiral

2. Associations
 • Individual
 • Diplo-
 • Staphylo-
 • Strepto-
Bacterial classification

D. Growth characteristics

1. Oxygen requirement
 • Aerobic
 • Anaerobic, Microaerophilic, aerotolerant
 • Facultative

2. Spore formation

3. Intracellular/extracellular

4. Fastidious/non-fastidious
Bacterial classification

- Gram-positive rods
 - Sporeformers
 - Aerobic or facultative anaerobes: *Bacillus*
 - Obligate anaerobes: *Clostridium*
 - Non-sporeformers
 - Regular shape and staining properties: *Listeria, Erysipelothrix*
 - Irregular shape and staining properties
 - Non-acid-fast: *Corynebacterium, Propionibacterium*
 - Acid-fast: *Mycobacterium*
 - Filamentous, branching cells: *Actinomyces, Nocardia*
Medically important bacteria

Oral site
- Gram-positive bacteria (usually *Streptococcus* spp.)
- *Candida* spp.

Respiratory-site ventilator and lungs
- Gram-negative bacteria (*Pseudomonas* spp., *Acinetobacter* spp., *Enterobacteriaceae*, etc.)
- Gram-positive bacteria (*Staphylococcus* spp., etc.)
- Fungi (*Candida* spp., *Aspergillus* spp., etc.)

Burn wound site
- Gram-negative bacteria (usually *Pseudomonas* spp.)
- Gram-positive bacteria (usually *Staphylococcus* spp.)
- Fungi (usually *Candida* spp. but sometimes *Aspergillus* spp.)

Cutaneous site and vascular catheters
- Gram-positive and Gram-negative bacteria (usually *Staphylococcus* spp.)
- *Candida* spp.

Intra-abdominal site
- Gram-negative bacteria (usually *Enterobacteriaceae*)
- Gram-positive bacteria (usually *Enterococcus* spp.)
- *Candida* spp.

Lower reproductive tract
- Gram-negative bacteria
- Gram-positive bacteria
- Fungi (usually *Candida* spp. but sometimes *Cryptococcus neoformans*)

Urinary site with catheters
- Gram-negative bacteria (*Pseudomonas* spp. and *Enterobacteriaceae*)
- Gram-positive bacteria
- *Candida* spp.
Laboratory diagnosis

1. **Specimen:**
 - Pus from abscesses, wounds, burns
 - Sputum
 - Faeces or vomit
 - Blood
 - Mid-stream urine
 - Anterior nasal
Laboratory diagnosis

2. Culturing of specimens and Microscopy:
 – Blood agar and MacConkey agar
 – Mannitol salt agar
 – Incubation at 37 °C for 24-48 h

3. Biochemical Identification:
 – Gram stain
 – Catalase test, Coagulase test, DNAse test, Oxidase test

4. Rapid indirect identification:
 – Latex Agglutination
 – Quantitative (PCR)
 – Antibody reactions (ELISA)