Serret-Frenet Basis for Space Curves Math 473
 Introduction to Differential Geometry Lecture 6

Dr. Nasser Bin Turki
King Saud University
Department of Mathematics

September 15, 2018

Principal Normal and Binormal

Let $\alpha: I \mapsto \mathbb{R}^{3}$ be a regular space curve. Let $t \in I$ be such that $\kappa(t) \neq 0$.

Let $\alpha: I \mapsto \mathbb{R}^{3}$ be a regular space curve. Let $t \in I$ be such that $\kappa(t) \neq 0$.
Defnation (1):
We know that the vector $T^{\prime}(t)$ is either orthogonal to $T(t)$ or $T^{\prime}(t)=0$. But $T^{\prime}(t) \neq 0$ since $\left|T^{\prime}(t)\right|=\kappa(t) \cdot\left|\alpha^{\prime}(t)\right| \neq 0$. We define the principal normal of α as

Let $\alpha: I \mapsto \mathbb{R}^{3}$ be a regular space curve. Let $t \in I$ be such that $\kappa(t) \neq 0$.
Defnation (1):
We know that the vector $T^{\prime}(t)$ is either orthogonal to $T(t)$ or $T^{\prime}(t)=0$. But $T^{\prime}(t) \neq 0$ since $\left|T^{\prime}(t)\right|=\kappa(t) \cdot\left|\alpha^{\prime}(t)\right| \neq 0$. We define the principal normal of α as

$$
N=\frac{T^{\prime}}{\kappa} .
$$

Let $\alpha: I \mapsto \mathbb{R}^{3}$ be a regular space curve. Let $t \in I$ be such that $\kappa(t) \neq 0$.
Defnation (1):
We know that the vector $T^{\prime}(t)$ is either orthogonal to $T(t)$ or $T^{\prime}(t)=0$. But $T^{\prime}(t) \neq 0$ since $\left|T^{\prime}(t)\right|=\kappa(t) \cdot\left|\alpha^{\prime}(t)\right| \neq 0$. We define the principal normal of α as

$$
N=\frac{T^{\prime}}{\kappa}
$$

We define the binormal of α as

Let $\alpha: I \mapsto \mathbb{R}^{3}$ be a regular space curve. Let $t \in I$ be such that $\kappa(t) \neq 0$.
Defnation (1):
We know that the vector $T^{\prime}(t)$ is either orthogonal to $T(t)$ or $T^{\prime}(t)=0$. But $T^{\prime}(t) \neq 0$ since $\left|T^{\prime}(t)\right|=\kappa(t) \cdot\left|\alpha^{\prime}(t)\right| \neq 0$. We define the principal normal of α as

$$
N=\frac{T^{\prime}}{\kappa} .
$$

We define the binormal of α as

$$
B=T \times N .
$$

Remark:

The principal normal N is a unit vector orthogonal to T.

Remark:

The principal normal N is a unit vector orthogonal to T. The binormal B is orthogonal to both T and N and is unit length: $|B|=|T \times N|=|T| \cdot|N|=1$ since $T \perp N$.

Theorem 1:
Let $\alpha: I \mapsto \mathbb{R}^{3}$ be a regular space curve.

Theorem 1:
Let $\alpha: I \mapsto \mathbb{R}^{3}$ be a regular space curve.
For each t in I with $\kappa(t) \neq 0$, the vectors $T(t), N(t), B(t)$ form an orthonormal basis of \mathbb{R}^{3},

Theorem 1:
Let $\alpha: I \mapsto \mathbb{R}^{3}$ be a regular space curve.
For each t in I with $\kappa(t) \neq 0$, the vectors $T(t), N(t), B(t)$ form an orthonormal basis of \mathbb{R}^{3},

$$
\{T(t), N(t), B(t)\}
$$

Theorem 1:

Let $\alpha: I \mapsto \mathbb{R}^{3}$ be a regular space curve.
For each t in I with $\kappa(t) \neq 0$, the vectors $T(t), N(t), B(t)$ form an orthonormal basis of \mathbb{R}^{3},

$$
\{T(t), N(t), B(t)\}
$$

i.e. they are of length one

$$
|T(t)|=1, \quad|N(t)|=1, \quad|B(t)|=1
$$

Theorem 1:

Let $\alpha: I \mapsto \mathbb{R}^{3}$ be a regular space curve.
For each t in I with $\kappa(t) \neq 0$, the vectors $T(t), N(t), B(t)$ form an orthonormal basis of \mathbb{R}^{3},

$$
\{T(t), N(t), B(t)\}
$$

i.e. they are of length one

$$
|T(t)|=1, \quad|N(t)|=1, \quad|B(t)|=1
$$

and orthogonal to each other:

$$
T(t) \perp N(t), \quad N(t) \perp B(t), \quad B(t) \perp T(t)
$$

Theorem 1:

Let $\alpha: I \mapsto \mathbb{R}^{3}$ be a regular space curve.
For each t in I with $\kappa(t) \neq 0$, the vectors $T(t), N(t), B(t)$ form an orthonormal basis of \mathbb{R}^{3},

$$
\{T(t), N(t), B(t)\}
$$

i.e. they are of length one

$$
|T(t)|=1, \quad|N(t)|=1, \quad|B(t)|=1
$$

and orthogonal to each other:

$$
T(t) \perp N(t), \quad N(t) \perp B(t), \quad B(t) \perp T(t) .
$$

They satisfy the equations

$$
\begin{aligned}
& T \bullet T=N \bullet N=B \bullet B=1, \\
& T \bullet N=N \bullet T=N \bullet B=B \bullet N=B \bullet T=T \bullet B=0, \\
& T \times N=B, \quad N \times B=T, \quad B \times T=N, \\
& N \times T=-B, \quad B \times N=-T, \quad T \times B=-N .
\end{aligned}
$$

Proof of Theorem 1

Defnation (2):Serret-Frenet Frame
The Serret-Frenet frame or the Serret-Frenet basis of the curve α is the orthonormal basis

$$
\{T(t), N(t), B(t)\}
$$

Thanks for listening.

