Serret-Frenet Equations for Space Curve Math 473 Introduction to Differential Geometry Lecture 8

Dr. Nasser Bin Turki

King Saud University Department of Mathematics

September 25, 2018

Dr. Nasser Bin Turki Serret-Frenet Equations for Space Curve Math 473 Introduction

Theorem (1):

Let $\alpha : I \mapsto \mathbb{R}^3$ be a unit speed curve with $\kappa = 0$ on the interval *I*. Then the curve segment α is a straight line.

4 3 5 4 3 5

Theorem (1):

Let $\alpha : I \mapsto \mathbb{R}^3$ be a unit speed curve with $\kappa = 0$ on the interval *I*. Then the curve segment α is a straight line. **Proof:**

4 3 5 4 3 5

Theorem (2):

For a regular parametrised space curve $\alpha : I \mapsto \mathbb{R}^3$ the following Serret-Frenet equations are satisfied (with $S = |\alpha'|$):

$$T' = \kappa \cdot s \cdot N,$$

$$N' = -\kappa \cdot s \cdot T + \tau \cdot s \cdot B,$$

$$B' = -\tau \cdot s \cdot N.$$

4 3 6 4 3 6

Theorem (2):

For a regular parametrised space curve $\alpha : I \mapsto \mathbb{R}^3$ the following Serret-Frenet equations are satisfied (with $S = |\alpha'|$):

$$T' = \kappa \cdot s \cdot N,$$

$$N' = -\kappa \cdot s \cdot T + \tau \cdot s \cdot B,$$

$$B' = -\tau \cdot s \cdot N.$$

For a unit speed curve, we have $s = |\alpha'| = 1$ and the Serret-Frenet equations have the following form:

$$T' = \kappa \cdot N,$$

$$N' = -\kappa \cdot T + \tau \cdot B,$$

$$B' = -\tau \cdot N.$$

Remark(1): The Serret-Frenet equations can be written in the following matrix form

$$\begin{pmatrix} T' & N' & B' \end{pmatrix} = |\alpha'| \cdot \begin{pmatrix} T & N & B \end{pmatrix} \cdot \begin{pmatrix} 0 & -\kappa & 0 \\ \kappa & 0 & -\tau \\ 0 & \tau & 0 \end{pmatrix}.$$

• • = • • = •

э

Remark(1): The Serret-Frenet equations can be written in the following matrix form

$$\begin{pmatrix} T' & N' & B' \end{pmatrix} = |\alpha'| \cdot \begin{pmatrix} T & N & B \end{pmatrix} \cdot \begin{pmatrix} 0 & -\kappa & 0 \\ \kappa & 0 & -\tau \\ 0 & \tau & 0 \end{pmatrix}.$$

Remark(2): For a unit speed curve we have $s = |\alpha'| = 1$ and the Serret-Frenet equations can be written as

$$\begin{pmatrix} T' & N' & B' \end{pmatrix} = \begin{pmatrix} T & N & B \end{pmatrix} \cdot \begin{pmatrix} 0 & -\kappa & 0 \\ \kappa & 0 & -\tau \\ 0 & \tau & 0 \end{pmatrix}.$$

• • = • • = • = •

Proof of Theorem (2) (for α is a unit speed):

3 🔺 🖌 🖻

Thanks for listening.

Dr. Nasser Bin Turki Serret-Frenet Equations for Space Curve Math 473 Introduction

▲御▶ ▲ 臣▶ ▲ 臣▶

æ