Serret-Frenet Equations for Space Curve Math 473 Introduction to Differential Geometry Lecture 8

Dr. Nasser Bin Turki
King Saud University
Department of Mathematics

September 25, 2018

Theorem (1):
Let $\alpha: I \mapsto \mathbb{R}^{3}$ be a unit speed curve with $\kappa=0$ on the interval I. Then the curve segment α is a straight line.

Theorem (1):
Let $\alpha: I \mapsto \mathbb{R}^{3}$ be a unit speed curve with $\kappa=0$ on the interval I. Then the curve segment α is a straight line. Proof:

Serret-Frenet Equations

Theorem (2):
For a regular parametrised space curve $\alpha: I \mapsto \mathbb{R}^{3}$ the following Serret-Frenet equations are satisfied (with $S=\left|\alpha^{\prime}\right|$):

$$
\begin{aligned}
T^{\prime} & =\kappa \cdot s \cdot N, \\
N^{\prime} & =-\kappa \cdot s \cdot T+\tau \cdot s \cdot B, \\
B^{\prime} & =-\tau \cdot s \cdot N .
\end{aligned}
$$

Serret-Frenet Equations

Theorem (2):
For a regular parametrised space curve $\alpha: / \mapsto \mathbb{R}^{3}$ the following Serret-Frenet equations are satisfied (with $S=\left|\alpha^{\prime}\right|$):

$$
\begin{aligned}
T^{\prime} & =\kappa \cdot s \cdot N, \\
N^{\prime} & =-\kappa \cdot s \cdot T+\tau \cdot s \cdot B, \\
B^{\prime} & =-\tau \cdot s \cdot N .
\end{aligned}
$$

For a unit speed curve, we have $s=\left|\alpha^{\prime}\right|=1$ and the Serret-Frenet equations have the following form:

$$
\begin{aligned}
T^{\prime} & =\kappa \cdot N, \\
N^{\prime} & =-\kappa \cdot T+\tau \cdot B, \\
B^{\prime} & =-\tau \cdot N .
\end{aligned}
$$

Remark(1): The Serret-Frenet equations can be written in the following matrix form

$$
\left(\begin{array}{lll}
T^{\prime} & N^{\prime} & B^{\prime}
\end{array}\right)=\left|\alpha^{\prime}\right| \cdot\left(\begin{array}{lll}
T & N & B
\end{array}\right) \cdot\left(\begin{array}{ccc}
0 & -\kappa & 0 \\
\kappa & 0 & -\tau \\
0 & \tau & 0
\end{array}\right) .
$$

Remark(1): The Serret-Frenet equations can be written in the following matrix form

$$
\left(\begin{array}{lll}
T^{\prime} & N^{\prime} & B^{\prime}
\end{array}\right)=\left|\alpha^{\prime}\right| \cdot\left(\begin{array}{lll}
T & N & B
\end{array}\right) \cdot\left(\begin{array}{ccc}
0 & -\kappa & 0 \\
\kappa & 0 & -\tau \\
0 & \tau & 0
\end{array}\right) .
$$

Remark(2): For a unit speed curve we have $s=\left|\alpha^{\prime}\right|=1$ and the Serret-Frenet equations can be written as

$$
\left(\begin{array}{lll}
T^{\prime} & N^{\prime} & B^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
T & N & B
\end{array}\right) \cdot\left(\begin{array}{ccc}
0 & -\kappa & 0 \\
\kappa & 0 & -\tau \\
0 & \tau & 0
\end{array}\right) .
$$

Proof of Theorem (2) (for α is a unit speed):

Thanks for listening.

