Applications of the Serret-Frenet Equations Math 473 Introduction to Differential Geometry Lecture 9

Dr. Nasser Bin Turki

King Saud University Department of Mathematics

September 25, 2018

Definition(1):Plane Curve

A plane curve is a curve that lies in a single plane.

伺 ト イ ヨ ト イ ヨ ト

э

Definition(1): Plane Curve

A plane curve is a curve that lies in a single plane.

Definition(2):

Let $\alpha: I \mapsto \mathbb{R}^3$ be a regular curve. We say α is a plane curve if there is unit vector such that

$$\overrightarrow{(\alpha(t) - \alpha(0))} \bullet \overrightarrow{u} = 0$$

• • = • • = •

Theorem (1):

Let $\alpha : I \mapsto \mathbb{R}^3$ be a unit speed curve with $\kappa > 0$ and S is the arc-length. Then, α is a plane curve if and only if $\tau(t) = 0$ for all $t \in I$.

• • = • • = •

э

Theorem (1):

Let $\alpha : I \mapsto \mathbb{R}^3$ be a unit speed curve with $\kappa > 0$ and S is the arc-length. Then, α is a plane curve if and only if $\tau(t) = 0$ for all $t \in I$.

Proof:

(* E) * E)

-

Theorem (2):

Let $\alpha: I \mapsto \mathbb{R}^3$ be a unit speed curve with $\kappa(t) > 0$ for all $t \in I$. If we have $\kappa(t) = \lambda$, where λ is constant, and $\tau(t) = 0$ for all $t \in I$, then the curve α is part of circle whose radius is $\frac{1}{\lambda}$.

化压力 化压力

-

Theorem (2):

Let $\alpha : I \mapsto \mathbb{R}^3$ be a unit speed curve with $\kappa(t) > 0$ for all $t \in I$. If we have $\kappa(t) = \lambda$, where λ is constant, and $\tau(t) = 0$ for all $t \in I$, then the curve α is part of circle whose radius is $\frac{1}{\lambda}$. **Proof:**

化压力 化压力

-

Thanks for listening.

æ