Applications of the Serret-Frenet Equations Math 473
 Introduction to Differential Geometry Lecture 9

Dr. Nasser Bin Turki
King Saud University
Department of Mathematics

September 25, 2018

Plane Curve

Definition(1): Plane Curve

A plane curve is a curve that lies in a single plane.

Plane Curve

Definition(1): Plane Curve
A plane curve is a curve that lies in a single plane.

Definition(2):

Let $\alpha: I \mapsto \mathbb{R}^{3}$ be a regular curve. We say α is a plane curve if there is unit vector such that

$$
\overrightarrow{(\alpha(t)-\alpha(0))} \bullet \vec{u}=0
$$

Theorem (1):

Let $\alpha: I \mapsto \mathbb{R}^{3}$ be a unit speed curve with $\kappa>0$ and S is the arc-length. Then, α is a plane curve if and only if $\tau(t)=0$ for all $t \in I$.

Theorem (1):

Let $\alpha: I \mapsto \mathbb{R}^{3}$ be a unit speed curve with $\kappa>0$ and S is the arc-length. Then, α is a plane curve if and only if $\tau(t)=0$ for all $t \in I$. Proof:

Theorem (2):

Let $\alpha: I \mapsto \mathbb{R}^{3}$ be a unit speed curve with $\kappa(t)>0$ for all $t \in I$. If we have $\kappa(t)=\lambda$, where λ is constant, and $\tau(t)=0$ for all $t \in I$, then the curve α is part of circle whose radius is $\frac{1}{\lambda}$.

Theorem (2):

Let $\alpha: I \mapsto \mathbb{R}^{3}$ be a unit speed curve with $\kappa(t)>0$ for all $t \in I$. If we have $\kappa(t)=\lambda$, where λ is constant, and $\tau(t)=0$ for all $t \in I$, then the curve α is part of circle whose radius is $\frac{1}{\lambda}$. Proof:

Thanks for listening.

