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Lect 10: Kinematics



Engineering Mechanics: Dynamics

 Dynamics

— Branch of mechanics that deals with the motion
of bodies under the action of forces
(Accelerated Motion)

« Two distinct parts:

— Kinematics

 study of motion without reference to the forces that
cause motion or are generated as a result of motion

— Kinetics

* relates the action of forces on bodies to their
resulting motions



Engineering Mechanics: Dynamics

» Basis of rigid body dynamics

— Newton’s 2" |aw of motion

* A particle of mass “m” acted upon by an
unbalanced force “F” experiences an acceleration
“a” that has the same direction as the force and a
magnitude that is directly proportional to the
force

* a Is the resulting acceleration measured in a non-
accelerating frame of reference



Kinematics of Particles

* Motion
— Constrained :: confined to a specific path
— Unconstrained :: not confined to a specific path

« Choice of coordinates

— Position of P at any time t
* rectangular (i.e., Cartesian) coordinates x, y, z
 cylindrical coordinates r, 6, z
» spherical coordinates R, 6, ®

— Path variables

* Measurements along the tangent f and normal n to
the curve



Kinematics of Particles

 Choice of coordinates




Kinematics of Particles

Rectilinear Motion
 Motion along a straight line

This sprinter will undergo rectilinear
acceleration until he reaches his ter-
minal speed.
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Kinematics of Particles :: Rectilinear Motion

t 1+t
‘Motion along a straight line  _, % B B

|

S As
Position at any instance of time ¢

.. specified by its distance s measured from some convenient reference point O

fixed on the line

- (disp. is negative if the particle moves in the negative s-direction).

Velocity of the particle: Acceleration of the particle:
. 2,
U:é:&a Both are :@:@ or g:d;:"
At vector quantities dt dt

+ve or —ve depending
on +ve or —ve displacement

vdo =ads or Sds=5ds

S

+ve or —ve depending on whether
velocity is increasing or decreasing

+8



Kinematics of Particles

Rectilinear Motion:
Graphical Interpretations

Using s-t curve, v-t & a-t curves can be plotted.

* Netdisp from {, to {, = corresponding area under

v-f curve =2 ) )
j ds =| ~vdt
.

1 I

Area under v-t curve during time dt = vdt == ds bt ¢ l ty

or s,-S,=(area under v-t curve)

Area under a-f curve during time dt = adt == dv ty = |~ dt ty
* Net change in vel from t, to t, = corresponding -
area under a-tcurve 2> ‘ l
L dv=r adt
1 1

or v,-V,=(area under a-t curve)




Kinematics of Particles

Rectilinear Motion:
Graphical Interpretations a

Two additional graphical relations: |
Area under a-s curve during disp ds= ads == vdv F
al

« Net area under a-s curve betn position

coordinates s, and S, 2 4, 55
j vdv =_[ ads
51

'

S‘]_ = :-» ds 32

or Y2 (v,2—v,?) = (area under a-s curve)

Slope of v-s curve at any point A = dv/ds v
» Construct a normal AB to the curve at A. From
similar triangles:
CB _dv v

- C(CB=v— =a (acceleration)
v ds ds

- Vel and posn coordinate axes should have the same
numerical scales so that the accln read on the x-axis in
meters will represent the actual accln in m/s?




Kinematics of Particles :: Rectilinear Motion

Analytical Integration to find the position coordinate

Acceleration may be specified as a function of time, velocity, or position
coordinate, or as a combined function of these.

(a) Constant Acceleration
At the beginning of the interval 2 t=0, s =53, v =,
For a time interval t: integrating the following two equations

v r'f
a_d"' fdv=aJ dt or v=uv,+at
g, ‘o 0
dt i
= 2, 2 -
T L vdv a | ds or ve = uy® + 2a(s — sg)

85

Substituting in the following equation and integrating will give the position
coordinate:

g at?

V= fds—f{ug+at}dt or s =8yt vpt + 5
[ Sy

dr

Equations applicable for Constant Acceleration and for time interval O to ¢



Kinematics of Particles :: Rectilinear Motion

Analytical Integration to find the position coordinate

(b) Acceleration given as a function of time, a = f(f)

At the beginning of the interval 2 =0, s = 55, v= v
For a time interval t. integrating the following equation

av dv ’
= dv = (¢) dt ) = Vg + () dt
a= 2 f(H)= f v j f or v = U, fo (@)

Substituting in the following equation and integrating will give the position
coordinate:

d s t ¢
o f ds=f v dt or s=su+f vdit
dt Ch 0 0

Alternatively, following second order differential equation may be solved to
get the position coordinate:

W95 e 5 §=1@)
dt*




Kinematics of Particles :: Rectilinear Motion

Analytical Integration to find the position coordinate
(c) Acceleration given as a function of velocity, a = f(v)

At the beginning of the interval 2 t=0, s = s, v= v,
For a time interval t. Substituting a and integrating the following equation

dv dv ' &7
- — 9 1) = — = d,: —U
T e Jl, R

Solve for v as a function of f and integrate the following equation to get the
position coordinate: ds

V= —
dt

Alternatively, substitute a = f(v) in the following equation and integrate to
get the position coordinate :

vdv =ads ["”F{?’:Fd = s, + " vdv
vo () %o : - S vo F(U)



Kinematics of Particles: Rectilinear Motion

Analytical Integration to find the position coordinate
(d) Acceleration given as a function of displacement, a = f(s)

At the beginning of the interval 2 =0, s=s,, v=,
For a time interval . substituting a and integrating the following equation

vdv =ads f vdv = f f(s) ds or v =g + 2 f f(s)ds

0

Solve for v as a function of s : v = g(s), substitute in the following equation
and integrate to get the position coordinate:

v:@ j f dt or t=| ds_
dt g(S} 0 8o £(s)

It gives t as a function of s. Rearrange to obtain s as a function of ¢ to get
the position coordinate.

In all these cases, if integration is difficult, graphical, analytical, or
computer methods can be utilized.



Kinematics of Particles: Rectilinear Motion

Example

Position coordinate of a particle confined to move along a straight line is given by
S = 2% — 24t + 6, where s is measured in meters from a convenient origin and t is
in seconds. Determine: (a) time reqd for the particle to reach a velocity of 72 m/s
from its initial condition at t = 0, (b) acceleration of the particle when v = 30 m/s,
and (c) net disp of the particle during the interval fromt=1stot=4s.

Solution

Differentiating s =22 -24t+6 - v=6—-24 m/s
- a =12t m/s?

(@Q)v=T72m/s>t=x4s
(- 4 s happened before initiation of motion = no physical interest.)
> t=4s

(b) v=30 m/s = t=3 sec 2 a =36 m/s?

(c)t=1stods.Usings=2-24t+6
As=s,—8, = [2(4°) —24(4) +6] — [2(1°) — 24(1) + 6]
As =54 m



Kinematics of Particles

Plane Curvilinear Motion
Motion of a particle along a curved path which lies in a single plane.

For a short time during take-off and landing,
planes generally follow plane curvilinear motion



Kinematics of Particles
Plane Curvilinear Motion: oo

Between A and A”.

Average velocity of the particle : v,, = Ar/ At

—> A vector whose direction is that of Ar and whose
magnitude is magnitude of Ar/ Ar

Average speed of the particle = As/ At

Instantaneous velocity of the particle is defined as
the limiting value of the average velocity as the time

interval approaches zero 2  — 1im 2
Ar—0 At

- V is always a vector tangent to the path 0

Extending the definition of derivative of a scalar to include vector quantity:

[v _dr _ i-} Derivative of a vector is a vector having a magnitude and a direction.

dt
Magnitude of v is equal to speed (scalar) p = |v| = ds _ S

dt




Kinematics of Particles
Plane Curvilinear Motion kb

Magnitude of the derivative:
|dr / di| =|f| =5 =|v| =v
- Magnitude of the velocity or the speed

Derivative of the magnitude:
dlr|/dt =dr/dt=r 0”

- Rate at which the length of the position vector is changing

Velocity of the particle at A = tangent vector v v’
Velocity of the particle at A” = tangent vector Vv’ '
2>V —V=AV , e
- AV Depends on both the change in magnitude of v ar A v '
on the change in direction of v. / s E
A



Kinematics of Particles
Plane Curvilinear Motion b

Between A and A’

Average acceleration of the particle : a_, = Av/ At

—> A vector whose direction is that of Av and whose
magnitude is the magnitude of Av/ At

Instantaneous acclin of the particle is defined as
the limiting value of the average accin as the time

interval approaches zero = :
PP a= lim Av
At—0 At
By definition of the derivative:
a = dl —e ‘.;I' v’
dt '

in curvilinear motion neither tangent to the path
nor normal to the path.

—> Acceleration component normal to the path points
toward the center of curvature of the path.

- In general, direction of the acceleration of a particle A’ £ d
v v’
A



Kinematics of Particles: piane curvilinear Motion

Rectangular Coordinates (x-y)

If all motion components are directly expressible
in terms of horizontal and vertical coordinates

4 )
r=xi+yj
v=rt=ii+jj
a=v=Ff=3Z+jj
\ J
Uy = %,V =yande, =v, = %,a, =V, =Y
2 2 2 e 2 2 2
U=t g v = Ju,°+u, tanH=U—

a=Ja’+a

Also, dy/dx =tan 0 =v, /v,

b

Path

xi

Time derivatives of the unit
vectors are zero because their
magnitude and direction remains
constant.



Kinematics of Particles: piane curvilinear Motion

Rectangular Coordinates (x-y)

Projectile Motion = An important application

Assumptions: neglecting aerodynamic drag, Neglecting curvature and rotation of
the earth, and altitude change is small enough such that g can be considered to
be constant & Rectangular coordinates are useful for the trajectory analysis

For the axes shown in the figure, the acceleration components are: a, =0, a,=-g
Integrating these eqgns for the condition of constant accln (slide 11) will give us
equations necessary to solve the problem.

_I-._"-. ________________________ x

() = vocos 6



Kinematics of Particles: piane curvilinear Motion

Rectangular Coordinates (x-y)

iact] - ]
Projectile Motion L e W
F 7 £ of ),
Horizontal Motion: a, = 0 E,;f;g;g/ |
Integrating this eqn for constant accln condition (—?_ -
v=yv,+al = v, .= (VD )1_
1 5 + Subscript zero denotes
xX=x.+vi+—al- = x=x.+(v.) Tt initial conditions: x,=1,=0
0 TVl T 0 ( 0).1 )
2 5 For the conditions under
Vo =v, + 2a(x - X, ) = v _= (Vo )T discussion:
" - x- and y- motions are
Vertical Motion: a,=-g independent |
Integrating this eqn for constant accln condition = Pathis parabolic
v=v,+at = v, = (vﬂ )1 — gt

e = e +(v,) t——=gt?
Y=XYoTV > Y=DXo 0/y g +"‘

v =v; +2a(y—y0) = V_i =(‘»’g)i —Zg(y_J’o)



Kinematics of Particles: piane curvilinear Motion

Normal and Tangential Coordinates (n-t)

Common descriptions of curvilinear motion uses Path Variables: measurements

made along the tangent and normal to the path of the particle.

+ Positive n direction: towards the center | B et
of curvature of the path | =%

Velocity and Acceleration
e, = unit vector in the n-direction at point A
e; = unit vector in the {-direction at point A [

1+

During differential increment of time dt, the particle
moves a differential distance ds from Ato A’ Pay =

p = radius of curvature of the path at A’
2> ds=pdp
Magnitude of the velocity: v = ds/dt = p dB/dt

- In vector form ;
v = ve, = pfe,

, o d(ve,)
Differentiating: a = ¥ — ¢
Ja= T o

Unit vector e, has non-zero derivative because its direction changes.

= ve, + ve,

—_—_————————————



Kinematics of Particles: piane Curvilinear Motion

Normal and Tangential Coordinates (n-t) e

Determination of &
- change in e; during motion from A to A’
—> The unit vector changes to e’,
The vector difference de, is shown in the bottom figure.
* In the limit de, has magnitude equal to length of
the arc | e;| dB =dB
» Direction of de, is given by e,

d
- We can write: de,=e, dB = d—g =e,

|
I
I
|
|
|
N
2
|
|
I
I
|
I
|
|

e e o P ity AL
Dividing by dt: de, /dt = e (d/dt) e, > (é, . Be”}

N
Substituting this and v = p dB/dt = v = pB in equation for acceleration:

dv dve,) . , 2 .
R ey = vé, + e, 2 a:b—e”JrUe,

dt dt

v
a, =—
o,
a=v=s

_[2, 2
a=,la, +a;




Kinematics of Particles: piane curvilinear Motion

Normal and Tangential Coordinates (n-t) . |
Important Equations : P a,=—=pp* =vp
v=pp P

U -
a= i e, + ve,
* In n-t coordinate system, there is no component !
of velocity in the normal direction because of constant p for any = faz e
section of curve (normal velocity would be rate of change of p). " ‘

- Normal component of the acceleration a,, is always directed towards the center of the
curvature =2 sometimes referred as centripetal acceleration.

* [f the particle moves with constant speed, 3 *\E: =
a,=0,anda=a, = Vp L i /
- a,, represents the time rate of change in the dirn of vel. 7/ X
« Tangential component a, will be in the +ve t-dirn ' [ Y
of motion if the speed v is increasing, and in the / /
- ve t-direction if the speed is decreasing. j 2
* |f the particle moves in a straight line, p = « J, e
a=0anda=a=0v=§
-> a, represents the time rate of change in A / ,:\' "
the magnitude of velocity. , Speed Spoed
mcr?;amg der:rfbs;Smg

Directions of tangential components
of acceleration are shown in the figure.

Acceleration vectors for
particle moving from A to B



Kinematics of Particles: piane curvilinear Motion

Normal and Tangential Coordinates (n-t)

Circular Motion: Important special case of plane curvilinear motion

» Radius of curvature becomes constant (radius r of the circle).

* Angle B is replaced by the angle 6 measured from any radial reference to OP
Velocity and acceleration components for t--..
the circular motion of the particle:

v=pp

:

v "2 P ~ _'*;h__
a,=—=pp* =vp —_

L

T s IRINLT - J——
a,=v== 9 a, =vir=ré“=vo

2 2 = = )
- /aHJrat a,=0=rb

general motion

N

circular motion




Kinematics of Particles: piane curvilinear Motion

Rectangular Coordinates (x-y)

Example

The curvilinear motion of a particle is defined by v, = 50 — 16t and y = 100 — 4f2.
Att=0,x=0.v, isinm/s? x and y are in m, and tis in s. Plot the path of the
particle and determine its velocity and acceleration at y = 0.

Solution: 100820 I
s . ¢ a9
.2 X T
J dx = J v, di J dx ’ (50 — 16¢) dt x = 50t — 82 m \\--\
0 40 80 \
3q
[a, = v,] a, d (50 - 16¢) a, = —16 m/s® g 60 ' ' /
dt '
;.‘l-‘
40 ad
v, =yl v, d (100 — 4£%) v, = —8t m/s /
- dit : 20 | ! /
. d : b
|C1_.. vl a, dt (—8¢) a, -8 m/s* 0 t=5 S‘
0 20 40 A 60 80

Calculate x and y for various t values and plot %, m



Kinematics of Particles: piane curvilinear Motion

Rectangular Coordinates (x-y)

Example
Solution:

Wheny=0->0=100-4# > t=5s

v, = 50 — 16(5) = —30 m/s
v, = —8(5) = —40 m/s

v=J(—30)%+ (—40)%2 = 50 m/s

a = J(—16)% + (—8)% = 17.89 m/s*

V= _30i = 40j m/s

a = —16i — 8j m/s*

=
=

100¢

80

60

40

20

0

t=0
\1\\{
3‘{
t=58/
0 20 40 4 60 80

X, m

Path Path

{v,= —-40 m/s



Kinematics of Particles: piane curvilinear Motion

Rectangular Coordinates (x-y)

Example: The rider jumps off the slope at 30° from a height of 1 m, and remained
in air for 1.5 s. Neglect the size of the bike and of the rider. Determine:

(a) the speed at which he was travelling off the slope,

(b) the horizontal distance he travelled before striking the ground, and

(c) the maximum height he attains.

. V
Solution: g
Let the origin of the _
coordinates be at A. C
30° |
h
|
}
I m
:




Kinematics of Particles: piane curvilinear Motion

3

Rectangular Coordinates (x-y)
C

Example:
Solution: For projectile motion: 3 I

a, =0, a,=-g=-9.81 m/s? > Constant Acceleration @A\
¢

(a) speed at which he was travelling off the slope?

Let v, be the initial velocity of the bike at A.
For vertical Motion: a, = -g; subsequent integrations will give following equations

v=v,+at = v, :(vg)y—gr

1 1
y:y0+v0r+5arr2 = y:yﬂ+(vc,)y?‘—Egiz‘2 +t

2

vi=vl+2a(y-y,) = vj:(vﬁ)i—2g(y—y0)

Using second eqn: -1 =0 + (v,),(1.5) - 0.5(9.81)(1.5)?
Initial velocity along y-direction (v,), = v, sin30 = 0.5V,

2> -1=0+0.5v(1.5) - 0.5(9.81)(1.5)

—> Initial Velocity of the bike: v, = 13.38 m/s (velocity at A)

B



Kinematics of Particles: piane curvilinear Motion

3

Rectangular Coordinates (x-y)
.

Example:
Solution: For projectile motion: it h

lm
'

(b) horizontal distance he travelled before striking | ‘
the ground?

a, =0, a,=-g=-9.81 m/s*-> Constant Acceleration ‘@A\ *
s ¢

Let R be the horizontal distance between A and B.
For horizontal Motion: a, = 0; subsequent integrations will give following equations

v=yvy,+at — vx:(vo)x

1
x:x0+v0r+5ar2 — x:x0+(vﬂ)xr +|

v :vé +2a(x—x0) = v, :(vo)x

Using second eqn: R =0 + (v),(1.5) = 13.38c0s30(1.5)
- Horz distance: R =174 m

B



Kinematics of Particles: piane curvilinear Motion

3

Rectangular Coordinates (x-y)
.

Example:
Solution: For projectile motion: ¢ P

I m
'

a,=0,a,=-g=-9.81 m/s?> Constant Acceleration ‘&A\ r
. °

(¢) Maximum height attained by the bike?

Let (h - 1) m be the maximum height attained from x-axis at point C.
For Vertical Motion: a,=-g,

v=v,+at = vV, = (VO )y —gf
I L
y:y0+vﬂt+5ar = y:y0+(v0)yf—5gr +

vi=v; +2aly-y,) = v, = (v, )i ~2g(y-¥,)

Using the third eqn between A and C: All the quantities are known except the
height of point C (y = h-1) and the velocity at point C > v,=0atC

- 0=(0.5x13.38)> - 2(9.81)(h -1 -0)

- h = 3.28 m (total height attained above ground level)

B



Kinematics of Particles: piane curvilinear Motion

Normal and Tangential Coordinates (n-)

Example: At the position shown, the driver applies brakes to produce a uniform
deceleration. Speed of the car is 100 km/h at A (bottom of the dip), and 50 km/h at
C (top of the hump). Distance between A and C is 120 m along the road.
Passengers experience a total acceleration of 3 m/s? at A. Radius of curvature of
the hump at C is 150 m. Calculate:

(a) radius of curvature at A

(b) total acceleration at inflection point B, and

(c) total acceleration at C.




Kinematics of Particles: piane curvilinear Motion

Normal and Tangential Coordinates (n-)

Example com C
Solution: o 60 m fr—
Converting the units of Velocity: :

v, = 100 km/h [1000/(60x60)] = 27.8 m/s A B 150 m
Ve = 50 km/h [1000/(60x60)] = 13.89 m/s

For Constant Deceleration, we can use the following formulae:

Using the third equation between A and C to find the
constant deceleration of the car:

(13.89)2 = (27.8)? + 2a(120 - 0)

> a=-2.41m/s?

p? = v§ +2a(x—x0) This acceleration is the tangential component of the
total acceleration 2 a, = - 2.41 m/s?

v=y,+at

X =X, +vﬂr+—at2
2

(a) radius of curvature at A?
Total accln at A is given as: a = 3 m/s? v V.,
Using the third eqn: (3)? = (a,)? + (-2.41)32 " p S =
- a, = 1.785 m/s? 4 =vy=5
Using the first P, = (27.8)%/1.785 > =432
sing the first eqn: p, = ( ) Pa m ) :m

S
I

=



Kinematics of Particles: piane curvilinear Motion .

Normal and Tangential Coordinates (n-t) om gom _C
Example =

Solution: A & 150 m
v, = 100 km/h [1000/(60x60)] = 27.8 m/s 2 !
Ve = 50 km/h [1000/(60x60)] = 13.89 m/s a, =;—pﬁ2 =vp

(b) total acceleration at inflection point B?

Tangential component of acceleration at B, a, =-2.41 m/s? a=.la, +a;

At inflection point radius of curvature is infinity,

Therefore, normal component of acceleration, a, =0 g

- Total acceleration at B: a = a, = -2.41 m/s? A oo AR o 8
(c) total acceleration at C? EF;%L ==
Tangential component of acceleration at C, a, =-2.41 m/s?

Normal component can be found from first eqn: B == 3
a, = (13.89)2/150 = 1.286 m/s? 6= a, =241 m/s?

a,=-241m/s? C

Total acceleration at C: a2 = (1.286)? + (-2.41)? 7{
- Total acceleration at C: a = 2.73 m/s? _

——

. a, = 1.286 m/s*
a, = 2.73 m/s?

+n



A motorist is traveling on a curved section of highway of radius 2500 ft at
the speed of 60 mi'h. The motorist suddenly applies the brakes. causing the
automobile to slow down at a constant rate. Knowing that after § s the speed
has been reduced to 45 mi‘h, determine the acceleration of the automobile
immediately after the brakes have been applied.




v,.l:m:y

a, =310 f/s2”

Tangential Component of Acceleration. First the speeds are expressed

in ft/s.
mi \/ 5280 ft l1h
GOth—(GOh)( imi )(3 S)—88ft/s

45 mivh = 66 ft/s
Since the automobile slows down at a constant rate, we have
Av 66 ft/s — 88 ft/s
At Ss

Normal Component of Acceleration. Immediately after the brakes have
been applied, the speed is still 88 ft/s, and we have

= —2.75 f/s®

a, = average a, =

Magnitude and Direction of Acceleration. The magnitude and direction
of the resultant a of the components a, and a, are

2
i~  48.4°
a 275 fv/s”

a,  3.10 fis”

= a = 4.14 f/s®
sin a sin 48.4°




