Engineering Mechanics AGE 2330

Lect 2: Force System

Dr. Feras Fraige

- Force: Represented by vector
 - Magnitude, direction, point of application
 - P: fixed vector (or sliding vector??)
 - External Effect
 - Applied force; Forces exerted by bracket, bolts, Foundation (reactive force)

- Rigid Bodies
 - External effects only
 - Line of action of force is important
 - Not its point of application
 - Force as sliding vector

F₁ and F₂

Concurrent forces

Lines of action intersect at a point

Transmissibility

Components and Projections of a Force

- Components and Projections
 - Equal when axes are orthogonal

$$\mathbf{F_1}$$
 and $\mathbf{F_2}$ are components of \mathbf{R}
 $\mathbf{R} = \mathbf{F_1} + \mathbf{F_2}$

:F_a and F_b are perpendicular projections on axes a and b

: $\mathbf{R} \neq \mathbf{F}_{\mathbf{a}} + \mathbf{F}_{\mathbf{b}}$ unless a and b are perpendicular to each other

Examples

$$F_x = F \sin \beta$$
$$F_y = F \cos \beta$$

$$F_x = -F \cos \beta$$
$$F_y = -F \sin \beta$$

Examples

$$F_x = F \sin(\pi - \beta)$$

$$F_y = -F \cos(\pi - \beta)$$

$$F_x = F \cos(\beta - \alpha)$$
$$F_y = F \sin(\beta - \alpha)$$

Example 1:

Determine the x and y scalar components of F_1 , F_2 , and F_3 acting at point A of the bracket

Solution:

$$F_{1_x} = 600 \cos 35^\circ = 491 \text{ N}$$

 $F_{1_y} = 600 \sin 35^\circ = 344 \text{ N}$
 $F_{2_x} = -500(\frac{4}{5}) = -400 \text{ N}$
 $F_{2_y} = 500(\frac{3}{5}) = 300 \text{ N}$

$$\alpha = \tan^{-1} \left[\frac{0.2}{0.4} \right] = 26.6^{\circ}$$

$$F_{3} = F_{3} \sin \alpha = 800 \sin 26.6^{\circ} = 358 \text{ N}$$

$$F_{3} = -F_3 \cos \alpha = -800 \cos 26.6^\circ = -716 \text{ N}$$

Alternative Solution: Scalar components of \mathbf{F}_3 can be obtained by writing \mathbf{F}_3 as a magnitude times a unit vector \mathbf{n}_{AB} in the direction of the line segment AB.

Unit vector can be formed by dividing any vector, such as the geometric position vector by its length or magnitude.

$$\mathbf{F}_{3} = F_{3}\mathbf{n}_{AB} = F_{3}\frac{\overrightarrow{AB}}{\overrightarrow{AB}} = 800 \left[\frac{0.2\mathbf{i} - 0.4\mathbf{j}}{\sqrt{(0.2)^{2} + (-0.4)^{2}}} \right]$$

$$= 800[0.447\mathbf{i} - 0.894\mathbf{j}]$$

$$= 358\mathbf{i} - 716\mathbf{j} \text{ N}$$

$$F_{3_{x}} = 358 \text{ N}$$

$$F_{3_{y}} = -716 \text{ N}$$

Example 2: The two forces act on a bolt at A. Determine their resultant.

- Graphical solution –
- Construct a parallelogram with sides in the same direction as P and Q and lengths in proportion.
- Graphically evaluate the resultant which is equivalent in direction and proportional in magnitude to the diagonal.
- Trigonometric solution
- Use the law of cosines and law of sines to find the resultant.

Q = 60 N $25^{\circ} \text{ P} = 40 \text{ N}$ $20^{\circ} \text{ P} = 40 \text{ N}$

Solution:

 Graphical solution - A parallelogram with sides equal to P and Q is drawn to scale. The magnitude and direction of the resultant or of the diagonal to the parallelogram are measured.

$$\mathbf{R} = 98 \,\mathrm{N}$$
 $\alpha = 35^{\circ}$

Graphical solution - A triangle is drawn with P
and Q head-to-tail and to scale. The
magnitude and direction of the resultant or of
the third side of the triangle are measured,

$$\mathbf{R} = 98 \,\mathbf{N}$$
 $\alpha = 35^{\circ}$

Q = 60 N $25^{\circ} \text{ P} = 40 \text{ N}$ $20^{\circ} \text{ P} = 40 \text{ N}$

Trigonometric Solution:

$$R^{2} = P^{2} + Q^{2} - 2PQ\cos B$$

= $(40N)^{2} + (60N)^{2} - 2(40N)(60N)\cos 155^{\circ}$

$$R = 97.73N$$

$$\frac{\sin A}{Q} = \frac{\sin B}{R}$$

$$\sin A = \sin B \frac{Q}{R}$$

$$= \sin 155^{\circ} \frac{60 \text{N}}{97.73 \text{N}}$$

$$A = 15.04^{\circ}$$

$$\alpha = 20^{\circ} + A$$

$$\alpha = 35.04^{\circ}$$

Example 3: Tension in cable *BC* is 725 N; determine the resultant of the three forces exerted at point *B* of beam *AB*.

Solution:

- Resolve each force into rectangular components.
- Determine the components of the resultant by adding the corresponding force components.
- Calculate the magnitude and direction of the resultant.

Solution

Magnitude, N	x Component, N	y Component, N
725	-525	500
500	-300	- 400
780	720	- 300
	$R_x = -105$	$R_y = -200$

$$\mathbf{R} = R_x \mathbf{i} + R_y \mathbf{j}$$
 $\mathbf{R} = (-105 \text{ N})\mathbf{i} + (-200 \text{ N})\mathbf{j}$

· Calculate the magnitude and direction.

$$\tan \alpha = \frac{-R_y}{-R_x} = \frac{200 \,\text{N}}{105 \,\text{N}} \quad \alpha = 62.3^{\circ}$$

$$R = \sqrt{R_{x^2} + R_{y^2}} = 225.9 \,\text{N} \qquad 5 \triangle 62.3^{\circ}$$

Rectangular Components in Space

- The vector \vec{F} is contained in the plane *OBAC*.
- Resolve \(\vec{F}\) into horizontal and vertical components.

$$F_y = F \cos \theta_y$$

$$F_h = F \sin \theta_y$$

Resolve F_h into rectangular components

$$F_x = F_h \cos \phi$$

$$= F \sin \theta_y \cos \phi$$

$$F_z = F_h \sin \phi$$

$$= F \sin \theta_y \sin \phi$$

Rectangular Components in Space

• With the angles between \vec{F} and the axes,

$$\begin{split} F_{x} &= F \cos \theta_{x} \quad F_{y} = F \cos \theta_{y} \quad F_{z} = F \cos \theta_{z} \\ \vec{F} &= F_{x} \vec{i} + F_{y} \vec{j} + F_{z} \vec{k} \\ &= F \left(\cos \theta_{x} \vec{i} + \cos \theta_{y} \vec{j} + \cos \theta_{z} \vec{k} \right) \\ &= F \vec{\lambda} \\ \vec{\lambda} &= \cos \theta_{x} \vec{i} + \cos \theta_{y} \vec{j} + \cos \theta_{z} \vec{k} \end{split}$$

• $\vec{\lambda}$ is a unit vector along the line of action of \vec{F} and $\cos \theta_x, \cos \theta_y$, and $\cos \theta_z$ are the direction cosines for \vec{F}

Rectangular Components in Space

Direction of the force is defined by the location of two points:

$$M(x_1, y_1, z_1)$$
 and $N(x_2, y_2, z_2)$

 $F_x = \frac{Fd_x}{d}$ $F_y = \frac{Fd_y}{d}$ $F_z = \frac{Fd_z}{d}$