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Scattering in low energies: The method of 
partial waves-a!

n  So far we considered approximating solution 
to the problem of calculation of the 
differential scattering cross-section. Where 
the interaction potential is considered small 
compared to the kinetic energy of the incident 
particle. !

n  The method of partial waves is an exact 
method which is practically used as an 
approximation method in low energies. !

!
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Scattering in low energies: The method of 
partial waves-b!

n  The mathematical form of the wave function at long 
distances :!

can be expanded in terms of Legendre polynomials!
!
!
!
!
where the coefficient           and the functions          are to 

be determined !

ψ→ eikz + f θ( ) e
ikr

r
       (10.1)

  
Pl cosθ( )

ψ r,θ( ) = Al
χ l r( )Pl cosθ( )

rl=0

∞

∑        (10.2)
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Scattering in low energies: The method of 
partial waves-c!

n  The functions        satisfy the radial 
Schrödinger eq. !

and the following boundary conditions:  !

 χ l

d
dr2
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Distorted wave function!



5 

Scattering in low energies: The method of 
partial waves-d!

n  What about the parameter     ?	
n  It is called the phase shift since it determines 

the difference in phase between this solution 
and the solution of the free radial equation:!

n  δl is a real value which vanishes for all values 
of l in the absence of a scattering potential 	

 δ l

χ l (∞) = 1
k
Cl sin kr − π l

2
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⎠
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Scattering in low energies: The method of 
partial waves-e!

n  The following relations can be proved!

Al = 2l +1( )ileiδl         (10.6a)

fk θ( ) = 1
k

2l +1( )eiδl sinδlPl cosθ( )          (10.6b)
l=0

∞

∑

dσ / dΩ =
1
k 2

2l +1( )eiδl sinδlPl cosθ( )
l=0

∞

∑
2

       (10.6c)

σ T = 2π f θ( )
2
sinθ dθ

0

π

∫ = σ l
l=0

∞

∑ =
4π
k 2

2l +1( )sin2δl
l=0

∞

∑       (10.6d)
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Comments!

n  The quantities σl are called partial cross sections. 
They correspond to the scattering of particles in 
various angular momentum states. !

n  The differential cross section consists of a 
superposition of terms with different angular 
momenta. This gives rise to interference patterns 
between different partial waves corresponding to 
different values of l. !

n  The interference terms go away in the total  cross 
section when the integral over θ is carried out. !
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The Optical Theorem!
n  From the above relations we can derive that:!

n  This is the so-called Optical Theorem. This theorem has a very 
deep physical meaning: When a beam of particles is scattered, it 
is obvious that. since the scattered particles are removed from 
the beam, the intensity of the beam, after the scattering region, 
will be smaller. But quantum scattering is purely a wave effect. 
This decrease at the incidence direction (θ=0), is the result of the 
destructive interference of the two terms of (6.1) between the 
incident and the scattered wave. The Optical theorem is the 
result of the conservation of particles or, equivalently, the 
conservation of probability. Optical theorem holds much more 
generally: when f depends on φ as well as on θ, and when we 
include inelastic scattering and absorption as well as inelastic 
scattering.  !

σ T =
4π
k

Im fk 0( )( )        (10.7)
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Scattering in low energies: The method of 
partial waves-f!

n  For the phase shifts in the case where the 
potential vanishes outside a region  r < a, and 
since the radial wave-function    !

    and its derivative are continuous at the 
boundary r = a, we have:!

!
!
!
Where    !

  Rl = χ l (r) / r

tanδl =
kjl

' ka( )−γ l jl (ka)

knl
' ka( )−γ lnl (ka)

     (10.8)

  
γ l =

1
Rl

dRl

dr
r=a

       Rl (r) = χ l (r) / r⎡⎣ ⎤⎦
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The method of phase shifts as a low 
energy approximation-a!

n  The method of phase shifts is an exact 
method of solving the problem of scattering 
in a central potential.!

n  But life is more complicated!
n  First, the radial equation rarely can be solved 

exactly, specially in cases where!
            .  !
n  Second, even in the case of a solution, we 

would have to sum an infinite series of partial 
waved to calculate the scattering amplitude!

            . !

  l ≠ 0

 
f θ( )
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The method of phase shifts as a low 
energy approximation-b!

n  All the above mean that this method is 
limited in the cases where only the first 
partial waves (l = 0 or 1) have a significant 
contribution in the scattering amplitude.!

n  This is what happens in the case of a low 
energy scattering inside a short range potential 
like the strong interaction potential between 
nucleons.!
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The method of phase shifts as a low 
energy approximation-c!

n  How many partial waves contribute to 
the scattering amplitude?!

n  This can be estimated by the inequality:!

   where a is the range of the potential and 
λ the wavelength of the incident 
particles.!

l ≤ ka = 2π a / λ( )       (10.9)
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The method of phase shifts as a low 
energy approximation-d!

n  For wavelengths far larger than the range of 
the potential (λ >> a) the only partial wave 
that participates in the scattering is the l = 0 
or the s-wave. In the scattering amplitude does 
not depend on θ and we have a purely 
isotropic scattering !

fk θ( ) = 1
2ik

2l +1( ) e2iδl −1( )Pl cosθ( )
l=0

∞

∑ =

=
3

2ik
e2iδ0 −1( )P0 cosθ( ) =

P0 cosθ( )=1
!

3
2ik

e2iδ0 −1( )       (10.10)
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The method of phase shifts as a low 
energy approximation-e!

n  The existence of the first deviations from the 
isotropic distribution is a sign of the presence 
of the p-wave (l = 1) in the scattering 
amplitude. !

n  The task for an experimentalist is to find the 
proper potential which fits better to the 
experimental curves              and             !

      !

  
fk θ( ) = f0 + f1 cosθ

  f0 (E)   f1(E)
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Scattering of identical particles-a!

n  The scattering between two identical particles is 
a very interesting quantum mechanical 
problem. It becomes more clear if we decide 
to study the effect in the system of the center 
of mass (CM) of the two particles where the 
distinction between a particle-target and a 
particle-projectile is not valid.!

n  We give a schematic representation in the 
next transparency!
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1!

2!

θ!

  
amplitude : f θ( )   

amplitude : f π −θ( )

1!
2!

π-θ!

Scattering of two identical particles at the center of mass system.!
If we place a particle detector it cannot distinguish if the particle!
which arrives is the particle 1 or 2. This means that we must add the !
scattering amplitudes.!

Scattering of identical particles-b!
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Scattering of identical particles-c!

n  The scattering amplitude is given by the 
expression:!

n  Where the proper choice of sign 
depends on the spin of particles and 
their relative orientation. !

f θ( )± f π −θ( )         (10.11)
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Scattering of identical particles-d!

n  The simplest case is that of two particles with spin 
equal to zero (so they are bosons). In  this case, since, 
the wave-function              must be symmetric to the 
interchange 1 <--> 2, and because this change is 
equivalent to     θ <--> π-θ then the correct choice for 
the sign + and the correct expression for the 
differential cross-section will be:!

  
ψ r1,  r2( )

dσ
dΩ

= f θ( )+ f π −θ( )
2

       (10.12)
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Scattering of identical particles-e!

n  The previous expression can be analytically 
expressed as:!

n  The first two terms represent the differential 
cross section in the case where the two 
particles were distinguishable, the other two 
terms represent the interference terms because 
the two particles are indistinguishable.!

  
dσ
dΩ

= f θ( )
2
+ f π −θ( )

2
+ f * θ( ) f π −θ( ) + f θ( ) f * π −θ( )
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Scattering of identical particles-f!

n  The difference between the two cases is more 
clear when the scattering is at           . We can 
show that: !

 θ = 900

  

dσ
dΩ

⎛

⎝⎜
⎞

⎠⎟ indistinguishable

= 4 f π / 2( )
2

dσ
dΩ

⎛

⎝⎜
⎞

⎠⎟ distinguishable

= 2 f π / 2( )
2
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Scattering of identical particles-g!
n  In the case where the two particles have a spin equal to 1/2 (like 

electrons or protons) then the relative spin orientation plays an 
important role.!

n  If their spins are parallel (S=1, triplet state) then the spatial 
wave-function will be anti-symmetric with respect to the 
interchange 1 <--> 2. In this case we must chose the - sign and!

n  If their spins are anti-parallel (S=0,singlet state) then the spatial 
wave-function will be symmetric with respect to the interchange 
1 <--> 2. In this case we must chose the + sign and!

  

dσ
dΩ

⎛

⎝⎜
⎞

⎠⎟
↑↑

= f θ( ) − f π −θ( )
2

  

dσ
dΩ

⎛

⎝⎜
⎞

⎠⎟
↑↓

= f θ( ) + f π −θ( )
2
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Scattering of identical particles-h!

n  The result is really impressing!!
n  Although spin does not affect the electrostatic 

force between the two particles, the relative 
orientation of the two spins affects 
dramatically their scattering (for example you 
can check what happens when the spins are 
parallel and the scattering is at 90 degrees).!
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Scattering of identical particles-i!

n  For an unpolarized beam of particles with 
spin s, the system can be in                    states   
that are distributed with equal probabilities. 
From the total number of possibilities, (2s+1) 
spin states are anti-symmetric. Therefore, the 
differential cross section is !

  
2s +1( )2

dσ
dΩ

= f θ( )
2
+ f π −θ( )

2
+
−1( )

2s

2s+1
2Re f θ( ) f * π −θ( )⎡

⎣
⎤
⎦      (10.13)


