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Definitions!

n  Identical particles in QM are not distinguishable. But 
this has dramatic consequences in the quantum 
mechanical description of a system. !

n  Suppose we have a system of two electrons. The 
wave function od this system which contains 
information about position and spin is given by:!

Ψ =Ψ r1,s1;r2 ,s2( ) =Ψ 1,2( )
1≡ r1,s1  and 2 ≡ r2 ,s2
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Definitions!

n  Since the particles are identical and not 
distinguishable then the mutual change 1ßè2 must  
not have measurable consequences in the system’s 
state. This means that:!

and implies that                                   so the final form is!

Ψ 2,1( ) = eiaΨ 1,2( )
ei2a =1⇒ eia = ±1

Ψ 2,1( ) = ±Ψ 1,2( )
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Definitions!

n  This relation says to us that: The wave-function of a 
system of two identical particles must be either 
symmetric or anti-symmetric with respect to the 
interchange of its variables.!

n  Now the question is: which of the two signs, + and -, 
we must keep? The answer is given by Pauli’s 
Principle:!

n  All the particles with integer spin (bosons) are 
described by symmetrical wave-functions. All the 
particles with half-integer spin (fermions) are 
described by anti-symmetrical wave-functions.!
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Implications!

n  Assume a system of two identical electrons 
interacting with electric only forces which they do 
not involve the spin.!

n  The total wave-function is the separable in a product 
of  a spatial part and a spin part: !

n  We know that we have two different cases for the 
electron spins:!

Ψ =Ψ r1,s1;r2 ,s2( ) =ψ r1,r2( ) X s1,s2( )
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Implications!

n  A) The two electrons have parallel spins (total spin 
S=1). In this case !

n  From where it is obvious that !

X
↑↑
s1,s2( ) =

X
↑
s1( ) X↑

s2( )
1
2
X
↑
s1( ) X↓

s2( )+ X↓
s1( ) X↑

s2( )( )
X
↓
s1( ) X↓

s2( )

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

X
↑↑
s2 ,s1( ) = X↑↑

s1,s2( )
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Implications!

n  This has the following implication. Since the 
electrons are fermions the total wave-function must 
be symmetric, thus:!

Ψ r1,s1;r2 ,s2( ) = −Ψ r2 ,s2;r1,s1( )⇒
ψ r1,r2( ) X s1,s2( ) = −ψ r2 ,r1( ) X s2 ,s1( )⇒
ψ r1,r2( ) = −ψ r2 ,r1( ) Anti-symmetric 

spatial wave-
function!
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Implications!

n  B) The two electrons have anti-parallel spins (total 
spin S=0). In this case !

!
n  From where it is obvious that !

X
↑↓
s1,s2( ) = 1

2
X
↑
s1( ) X↓

s2( )− X↓
s1( ) X↑

s2( )( )

X
↑↓
s2 ,s1( ) = −X↑↓

s1,s2( )
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Implications!

n  Since the electrons are fermions the total wave-
function must be symmetric, thus:!

Ψ r1,s1;r2 ,s2( ) = −Ψ r2 ,s2;r1,s1( )⇒
ψ r1,r2( ) X s1,s2( ) = −ψ r2 ,r1( ) −X s2 ,s1( )( )⇒
ψ r1,r2( ) =ψ r2 ,r1( ) Symmetric spatial 

wave-function!
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Implications!

n  If the wave-function is anti-symmetric then, as we 
said:!

n  But if we put r1 = r2 =r  we get !

n  This means that the probability to find two electrons 
at the same point of the space is zero! This is a special 
consequence of the Pauli exclusion principle. !

ψ r1,r2( ) = −ψ r2 ,r1( )

ψ r,r( ) = −ψ r,r( )⇒ψ r,r( ) = 0
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Implications!

n  This has more interesting consequences. The zero 
value of the spatial wave-function means that as the 
two electrons approach each other the wave-function 
gets smaller values. Thus the probability becomes 
smaller or, in other words: Electrons with parallel 
spins tend to “repel” each other. !

n  On the contrary when the spins are anti-parallel 
they tend to “attract” each other!   !

Repulsion of parallel spins explains the ferromagnetism. The electrons, in order 
to minimize their electrostatic energy, develop parallel spins. Thus they create a 

large macroscopic magnet. The atomic magnets line up not because of their 
magnetic interaction but of the combination of electric repulsion and Pauli 

principle.!
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Pauli Exclusion Principle!

n  If we assume N particles that interact with a common 
external potential but not between each other then 
the total spatial wave-function is a product of N 
separate spatial wave-functions:!

!
n  Assume now that we have the simplest multi-

electron system which is the He atom and that one 
electron is placed at state α and the other at a state β 
such !

ψ r1,r2 ,...,rN( ) =ψ r1( ) ⋅ ⋅ ⋅ψ rN( )

α ≡ n1l1m1 β ≡ n2l2m2
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Pauli Exclusion Principle!

n  According to the what we said the spatial wave-
function of the system has the form:!

n  But the electrons are identical particles so if we 
interchange the particles:!

ψαβ r1,r2( ) =ψα r1( )ψβ r2( )

ψβα r1,r2( ) =ψβ r1( )ψα r2( ) ≡ψα r2( )ψβ r1( )

electron 1 at state α, 
electron 2 at state β#

electron 1 at state β, 
electron 2 at state α#
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Pauli Exclusion Principle!

n  Now what is the system spatial state? Any linear 
combination is a solution of the Schrödinger 
equation. To satisfy Pauli principle they must be 
either symmetric or anti-symmetric:!

ψS =
1
2
ψαβ +ψβα( ) = 1

2
ψα r1( )ψβ r2( )+ψβ r1( )ψα r2( )( )

ψA =
1
2
ψαβ −ψβα( ) = 1

2
ψα r1( )ψβ r2( )−ψβ r1( )ψα r2( )( )
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Pauli Exclusion Principle!

n  The total wave-functions for the cases of total spin 
(S=1, S=0) will be: !

n  Note that if α=β then ψΑ=0 so the only spin state is 
this with opposite spins. This is the Pauli exclusion 
principle.#

ψ
↑↑
=ψA r1,r2( ) X↑↑

s1,s2( ) ψ
↑↓
=ψS r1,r2( ) X↑↓

s1,s2( )
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Exchange Degeneracy!

n  As we said in transparency 14 “Any linear 
combination is a solution of the Schrödinger 
equation”. This would bring a kind of degeneracy in 
the system. Even after a complete measurement there 
would be the so called exchange degeneracy. No 
further measurement would lift it because this would 
mean that there is a physical means to distinguish a 
particle from another. This would contradict the 
indistinguishability principle of identical particles.!

n  Pauli principle is not something arbitrary. It is the 
additional condition that lifts the exchange 
degeneracy!   !


