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PHYS-505/551�
 The addition of angular momenta

Lecture-5

http://fac.ksu.edu.sa/vlempesis 



2 

Introduction-a

n  When we seek to find the total angular 
momentum in the hydrogen atom we must 
add the orbital angular momentum l with the 
spin s. For the same purpose in multielectron 
atoms we need to add the orbital angular 
momenta and spin of all the electrons.

n  The total angular momentum j is defined the 
vector sum orbital angular momentum l and 
the spin s as follows:

j= l + s     (5.1)
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Introduction-b

n  But now the vectors l and s are quantum 
vectors which obey the following 
permutation relations:

n  The first step is to show that the vector j is 
also an angular momentum, that means it 
satisfies similar relations as (4.2) and (4.3).

sz ,  sx!" #$= i!sy ,   sx ,  sy!" #$= i!sz ,  sy ,  sz!" #$= i!sx     (5.3)

lz ,  lx!" #$= i!ly ,   lx ,  ly!" #$= i!lz ,  ly ,  lz!" #$= i!lx     (5.2)
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The total angular momentum-a

n  Since the quantity j=l+s is indeed an angular 
momentum it must obey the following two 
foundamental relations:

n  Where mj  for a given j  will get 2j+1 values

j2 j,mj = j j +1( )!2 j,mj         (5.4)

jz j,mj =mj! j,mj          (5.5)

mj=− j,  ... ,+ j          (5.6)
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The total angular momentum-b

n  Now the question comes naturally: 
What are the possible values of j for given l 
and s?

n  The answer is: For given l and s the 
angular momentum j takes the values:

   
j = l − s ,  . . . . . 

unit step 
!"#  ,  l + s

The proof is given in the class http://fac.ksu.edu.sa/vlempesis 
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The eigenstates of the total angular 
momentum-a

n  With the following examples we show the 
idea of constructing the total angular 
momentum eigenstates:

n  A) Construct the states of definite total 
angular momentum of a hydrogen atom at 
the state 2p.

n  B) Construct the state of definite total spin for 
two particles with spin 1/2 each.

Examples will be solved in class http://fac.ksu.edu.sa/vlempesis 
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The common eigenstates of J1
2, J2

2, J1z, J2z 

n  In general let’s consider two different 
angular momenta j1, j2 . These momenta can 
be angular momenta relating two different 
particles or angular momenta relating to one 
particle (for example, orbital angular 
momentum and spin).

n  These two momenta act in different state 
spaces, so that all their components are 
commuting with one another. The individual 
states of j1, j2  will be denoted, as usual, 

  
j1m1 ,  j2m2
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The common eigenstates of J1
2, J2

2, J1z, J2z 

n  For this states we have the usual properties:

(similarly for the particle 2)
n  The operators           can be represented in the base      

with square matrices of dimensions (the same for the 
particle 2). 

j1
2 j1m1 = !2 j1 j1 +1( ) j1m1
j1z j1m1 = !m j1m1

!

"
#

$
#
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2 , j1z j1m1
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The common eigenstates of J1
2, J2

2, J1z, J2z 

n  When the two particles make up a system we must 
be careful. The state space of the compound system 
is obtained by taking the direct product (or tensor 
product) of the individual state space of the two 
angular momenta. The eigenvectors of the new space 
are denoted as:

n  These eigenstates are orthonormal and make up a full 
base.

j1m1 ⊗ j2m2 = j1m1 j2m2 = j1 j2  ;  m1m2 ≡ m1m2
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The common eigenstates of J1
2, J2

2, J1z, J2z 

n  For fixed j1, j2, m1 and m2 have the values 
(integer or half-integers):

n  The state space of the compound system is a 
(2j1+1)(2j2 +1) -dimensional space.

n  The states             are, according to their 
construction, eigenstates of the operators   

  

m1 = − j1,− j1 +1,  ... j1
m2 = − j2 ,− j2 +1,  ... j2

"
#
$

%$

  
m1m2

   
j1

2 ,  j2
2 ,  j1z ,  j2z{ }

http://fac.ksu.edu.sa/vlempesis 

(5.9)



11 

The common eigenstates of J1
2, J2

2, J1z, J2z 

n  These states satisfy the following properties:

j1
2 j1 j2m1m2 = !2 j1 j1 +1( ) j1 j2m1m2

http://fac.ksu.edu.sa/vlempesis 

j1z j1 j2m1m2 = !m1 j1 j2m1m2

(5.10a)

(5.10b)

j2
2 j1 j2m1m2 = !2 j2 j2 +1( ) j1 j2m1m2

j2 z j1 j2m1m2 = !m2 j1 j2m1m2

(5.10c)

(5.10d )
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The eigenstates of the total angular 
momentum-The common eigenstates of 

J1
2, J2

2, J2, Jz 

n  In the absence of interaction between j1, j2, the 
operators j1, j2 commute with the total 
Hamiltonian and thus                       are also 
eigenstates of the system. But what happens 
if the there is an interaction between j1, j2?

n  In this case j1, j2 are not conserved but j = j1+j2 
is conserved. It is better then to transform to 
an eigenstate basis of the operators 

  
j1m1 , j2m2

   
j1

2 ,  j2
2 ,  J2 ,  Jz{ }
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The eigenstates of the total angular 
momentum-The common eigenstates of 

J1
2, J2

2, J2, Jz 

n  The eigenstates in this basis will be denoted 
by                                and satisfy   

j1  j2  J  M ≡ J  M

J2 JM ; j1 j2 = !2J J +1( ) JM ; j1 j2
J z JM ; j1 j2 = !M JM ; j1 j2
J1
2 JM ; j1 j2 = !2 j1 j1 +1( ) JM ; j1 j2
J 2
2 JM ; j1 j2 = !2 j2 j2 +1( ) JM ; j1 j2

!

"

#
#
#

$

#
#
#

   
J = j1 − j2 ,  j1 − j2 +1,. . . . . 

unit step 
!"#  ,  j1 + j2

  M = −J ,  − J +1,  ... , J
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The eigenstates of the total angular 
momentum-The common eigenstates of 

J1
2, J2

2, J2, Jz 

n  The eigenstates                               satisfy also

n  And of course they form a complete basis since  

j1  j2  J  M ≡ J  M

   
J = j1 − j2 ,  j1 − j2 +1,. . . . . 

unit step 
!"#  ,  j1 + j2

  M = −J ,  − J +1,  ... , J

http://fac.ksu.edu.sa/vlempesis 

J 'M ' JM = δ
J 'J
δ
M 'M JM

M=−J

J

∑
J
∑ JM =1

The states          do not have specific values 
of m1, m2. But it holds that M=m1+m2

J  M

(5.13)

(5.14)
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The Clebsch-Gordan coefficients-c

n  The two sets of orthonormal states              and            
are related by a unitary transform; that is we can 
write          in terms of                  as follows

n  The terms                                   are known as Clebsch-
Gordan coefficients. They are simply the elements of 
the transformation matrix that connects the            to 
the         basis

n  This means that, from the linear combination to get a 
state with not only a definite M but also with a 
definite J. 

  
cm1m2

= m1m2 | JM  
JM = m1m2 | JM m1m2

m1 ,m2

∑        

  
m1m2  

JM

 
JM   

m1m2
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m1m2

 
JM

(5.15)
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The Clebsch-Gordan coefficients-d

n  It is possible to obtain a general expression for the C-
G coefficients. However it is simpler to construct the 
coefficients for particular cases. They can be 
calculated by successive applications of                      
on the vectors              as follows:

n  Together with the relation:

 
J
±
= Jx ± iJ y

 
JM

   

J
±

JM = ! J (J +1) − M ( M +1) J , M ±1

J1± m1m2 = ! J1(J1 +1) − m1(m1 +1) m1 ±1,m2

"
#
$

%$

  
J = J1 + J2 , M = ± j1 + j2( ) = m1 = ± j1,  m2 = ± j1
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Properties of the Clebsch-Gordan 
coefficients-a

n      

  

m1,m2 JM = 0        unless   M = m1 + m2

m1,m2 JM =  is real

JM m1,m2
m2 =− j2

m2 = j2

∑
m1 =− j1

m1 = j1

∑ m1,m2 J ' M ' = δ
JJ 'δMM '

m1,m2 JM JM m1
' ,m2

'

M =− j

J

∑
J = j1 − j2

j1 + j2

∑ = δ
m1m1

'δm2 m2
'
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Properties of the Clebsch-Gordan 
coefficients-b

   

J (J +1) − M ( M +1) m1m2 J , M +1 =

j1( j1 +1) − m1(m1 +1) m1 ∓1,m2 JM + j2 ( j2 +1) − m2 (m2 +1) m1,m2 −1 JM

  

m2m1 JM = −1( ) j1 + j2 − J
m1m2 JM

−m1,−m2 J ,−M = −1( ) j1 + j2 − J
m1m2 JM
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(5.22)

(5.23)

(5.24)


