
Time independent perturbation theory: 
Obtaining approximate solutions to perturbed 

problems. 
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Methodology 

We initially write the new Hamiltonian as a sum of 2 terms:

H = Ho +λV

Then we write ψn  and En  as a power series in λ.

ψn =ψn
o +λψn

1 +λ 2ψn
2 + .....

En = En
o +λEn

1 +λ 2En
2 + .....

1st  , 2nd, 3rd order corrections........

Step 1 

Step 2 

 

Note: The corrections to the
wavefunction are perpendicular to it 
since they must correspond to really 
new contributions to it. Thus:

ψ n
0 ,ψ n

1( ) = ψ n
0 ,ψ n

2( ) = ..0
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Substituting in  H 0 +V( )ψ n = Enψ n   we have:

H o + λV( ) ψ n
o + λψ n

1 + λ2ψ n
2 + .....⎡⎣ ⎤⎦ = En

o + λEn
1 + λ2 En

2 + ...( ) ψ n
o + λψ n

1 + λ2ψ n
2 + .....⎡⎣ ⎤⎦

Collecting powers of λ:

H oψ n
o + λ H oψ n

1 +Vψ n
o( ) + λ2 H oψ n

2 +Vψ n
1( ) + .....

= Eoψ n
o + λ En

0ψ n
1 + En

1ψ n
0( ) + λ2 En

0ψ n
2 + En

1ψ n
1 + En

2ψ n
o( ) + ..

0th order in λ: H oψ n
o = Eoψ n

o

1st  order in λ: H oψ n
1 +Vψ n

o = En
0ψ n

1 + En
1ψ n

0

2nd  order in λ: H oψ n
2 +Vψ n

1 = En
0ψ n

2 + En
1ψ n

1 + En
2ψ n

o

Step 3 
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First order theory 
H oψn

1 +Vψn
o = En

0ψn
1 + En

1ψn
0

Taking the inner product with ψn
0 , that is multiplying with ψn

o( )
*

 and integrating:

ψn
0 H oψn

1 + ψn
0 ʹH ψn

o = En
0 ψn

0 ψn
1 + En

1 ψn
0 ψn

0

But H o  is Hermitian:

ψn
0 H oψn

1 = H oψn
0 ψn

1 = En
0ψn

0 ψn
1 = En

0 ψn
0 ψn

1

Also: ψn
0 ψn

0 =1

En
1 = ψn

0 Vψn
o

Step 4 

Thus: the first order correction to the energy  
is the expectation value of  the perturbation  
in the unperturbed state 
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First order correction to the wavefunction 

  

1st order in λ: H oψ n
1 +Vψ n

o = En
0ψ n

1 + En
1ψ n

0 →     H o − En
0( )ψ n

1 = − V − En
1( )ψ n

0

Let:     ψ n
1 = cm

nψ m
o

m≠n
∑

Em
o − En

o( )
m≠n
∑ cm

nψ m
o = − V − En

1( )ψ n
0   Taking the product with with ψ l

o

→ Em
o − En

o( )
m≠n
∑ cm

n ψ l
o ψ m

o = − ψ l
o V ψ n

o + En
1 ψ l

o ψ n
o  

→ El
o − En

o( )cl
n = − ψ l

o V ψ n
o      or    cl

n =
ψ l

o V ψ n
o

En
o − El

o( )

∴     ψ n
1 =

ψ m
o V ψ n

o

En
o − Em

o( )m≠n
∑ ψ m

o
Does this hold if  the energy spectrum is 
degenerate? 

Use the usual fact that a wavefunction can be 
expressed using the superposition priniciple, where 
cn, is how much of  ψm is contained in ψn.  
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•  From the second order perturbative equation: 

•  Multiply with            and get  

•  From the above you get                              

Second order correction to the energy 

  

2nd  order in λ: H oψ n
2 +Vψ n

1 = En
0ψ n

2 + En
1ψ n

1 + En
2ψ n

o

  ψ n
0

   

ψ n
0 ,  H oψ n

2( ) + ψ n
0 ,  Vψ n

1( ) = En
0 ψ n

0 ,  ψ n
2( )

= ψ n
0 , H oψ n

2( )
! "## $##

+ En
1 ψ n

0 ,  ψ n
1( )

=0
! "# $#

+ En
2

  
En

2 = ψ n
0 ,  Vψ n

1( )
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•  Using                   we have 

Second order correction to the energy 

En
2 = ψn

0 ,  Vψn
1( ) = ψn

0 ,  V cnm
1 ψm

0

m≠n
∑

⎛

⎝
⎜

⎞

⎠
⎟= cnm

1 ψn
0 ,  Vψm

0( )
m≠n
∑

= cnm
1 Vnm =

m≠n
∑ Vmn

En
0 − Em

0
Vnm

m≠n
∑

⇒ En
2 =

Vnm
2

En
0 − Em

0
m≠n
∑

  

ψ n
1 = cm

nψ m
o

m≠n
∑
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Notes and Remarks!
•  The perturbation method is valid when the 

Hamiltonian can be split in two parts: the 
unperturbed H0  which is solvable and a small 
perturbation V.!

• We may be led to believe that a perturbation 
expansion always exists for a sufficiently weak 
perturbation. Unfortunately, this is not 
necessarily the case.!

!
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Perturbation and Degenerate 
States!

•  It is clear that the series!

    will converge if the term!
!
!
!
    is sufficiently small.!
!
!
 
 
 

En − En
o = λ ψn

0 Vψn
o +λ 2

ψn
0 Vψm

o
2

En
0 − Em

0
m≠n
∑ + .....

ψn
0 Vψm

o

En
0 − Em

0
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Notes and Remarks!
•  When we have two energy levels that are connected with 

the perturbed potential tend to repel each other.!

 
•  This is a special case of the no-level-crossing theorem 

which states that a pair of energy levels connected by 
perturbation do not cross as the strength of the 
perturbation is varied.  !

•  The second order energy shift for the ground state is 
always negative. The lower state tends to get lower as a 
result of mixing.!

En − En
o = λ ψn

0 Vψn
o +λ 2

ψn
0 Vψm

o
2

En
0 − Em

0
m≠n
∑ + .....

http://fac.ksu.edu.sa/vlempesis 10 



Perturbation and Degenerate 
States!

•  Consider now the case where one or more states of the 
unperturbed Hamiltonian H0 are degenerate. Let’s 
consider that the energy of such a state is E(0) and that 
ψ(0)

n (n=1, 2, 3, ...N) the corresponding degenerate states.!
•  Applying the theory of the non-degenerate states we 

would have two problems:!
•  A) For the first correction in energy:                         which 

state of the ψ(0)
n  are we going to use?!

E (1) = ψ 0 Vψ o
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Perturbation and Degenerate 
States!

•  B) For the first correction in the wavefunction:!

!
The denominator is zero. So the only case that it would 
give a physically acceptable result is if !
!
!
Where now the states belong in the degeneracy subspace. 
But now we reached the answer!   

ψn
1( ) =

ψn
0 Vψm

o

En
0 − Em

0
m
∑ ψm

0( )

ψn
0 Vψm

o = 0  n ≠m( )
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Perturbation and Degenerate 
States!

•  The theory of the non-degenerate states can be applied in 
the degenerate case if and only if  the degenerate states 
have been chosen in such a way that :!

•  In a matrix language it means that the non-diagonal 
elements of the perturbation V matrix to be zero in the 
degeneracy subspace. The problem reduces to a problem 
of a matrix diagonalization!!

!

ψn
0 Vψm

o = 0  n ≠m( )
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Perturbation and Degenerate 
States!

•  Given that the degenerate states ψ(0)
n  have been chosen arbitrarily 

the corresponding perturbation matrix is:!

!

•  We know that a Hermitian matrix can be always diagonalized with 
a proper choice of basis. This means that we can choose a new set of                   
states        with respect to which the matrix will take the form:!

V =

V11 . . V1N
. . . .
VN1 . . VNN

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

V =

ε1 . . 0

. . . .
0 . . εN

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

ψ̂n
0
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Perturbation and Degenerate 
States!

•  The relation of the new basis ψn to the old ψ(0)
n  will be given by the 

solution of the solution of the eigenvalues:!

!

•  From the above we will take the eigenvalues of the energy as roots 
of the characteristic equation:!

V11 . . V1N
. . . .
VN1 . . VNN

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

c1
.

cN

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= ε

c1
.

cN

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

det(V −εI ) = det

V11 −ε . . V1N
V21 V22 −ε V2N
. . . .
VN1 VNN −ε

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
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Perturbation and Degenerate 
States!

•  For each eigenvalue we calculate the relevant 
eigenvector (c1, …, cN) and the relation of the new basis 
to the old is given by:!

•  The components of the eigenvectors of the 
perturbation matrix V are simultaneously the 
coefficients of the linear combination that relates the 
new base to the old one!!

•  And what is the next step? We just apply the theory of 
the non-degenerate states!!

ψ̂n
0( ) = cn1ψ1

0( ) + cn2ψ2
0( ) + ...+ cnNψN

0( )
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Perturbation and Degenerate 
States!

•  For each of the new eigenfunctions         we get the first 
order correction as follows:!

•  If the matrix eigenvalues are different then the number 
of first order corrections will be equal to the 
degeneracy order, that means equal to  N. !

•  This means that the initially degenerate level        will be 
split in N separate levels with energies:  !

ψ̂n
0( )

En
1( ) = ψ̂n

0( ) ,Vψ̂n
0( )( ) = ⌢Vnn = εn

E 0( )

En = E
0( ) +εn ,      n =1,  ... , N
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Perturbation and Degenerate 
States!

•  Perturbation lifts the 
degeneracy. This lifting is 
complete if all the eigenvalues 
of the perturbation matrix V are 
different and partial in the 
opposite case. !

•  Degeneracy and its lifting has a 
direct relation with symmetry 
and its breaking. E.g. rotational 
symmetry of Coulomb force 
imposes a degeneracy which 
can be broken by applying a 
magnetic field (Zeeman Effect)!

E 0( )

V = 0
V ≠ 0

E1 = E
0( ) +ε1

E2 = E
0( ) +ε2

E3 = E
0( ) +ε3
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The Method of Variations!
•  This method is applicable in cases where the 

perturbation method is either completely non applicable 
or it gives very bad results.  The starting point of this 
method is the following obvious mathematical 
statement:!

•  “The average value of a statistical quantity is always 
larger or at least equal to its smallest value”. Which in 
quantum mechanics means:!

•  “The average value of a quantum mechanical quantity is 
always larger or at least equal to its smallest eigenvalue” 
so:!
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The Method of Variations!
•  “The average value of the energy of a quantum system  a 

statistical quantity is always larger or at least equal to 
the energy of its ground state”.!

•  The “hard core” of this method is the following: We 
know that the ground state eigenfunction has no nodes 
(like a Gaussian) and bears the full symmetry of the 
problem.!

•  This idea reduces strongly the size of the set of all the 
possible candidate functions for the ground state. We 
need one more step.!

E = ψ,Hψ( ) ≥ E0
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The Method of Variations!
•  We get a set of parameters λ1, λ2,  ... λn,  on which the 

eigenfunction may depend and we seek for which values 
of these parameters the average energy becomes 
minimum. Assume that we have a single parameter and 
thus we can write ψ=ψ(x, λ). Then the average value of 
the energy is a function of λ. !

•  The value of λ which minimizes the average energy is 
given by:!

E = E λ( ) = ψ λ( ) H ψ λ( ) = ψ* λ( ) Hψ* λ( )( )∫ dx

dE / dλ = 0⇒ λ = λ0
Emin = E λ0( )
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