Non-cultural bacterial diagnostic methods

- **Antigen detection.** e.g. latex agglutination

- **Antibody detection.** e.g. agglutination tests, complement fixation tests, direct or indirect immunofluorescence

- **Molecular methods.** such as Polymerase Chain Reaction (PCR)
SEROLOGICAL METHODS:

There are two methods:

1. Identification of an organism (unknown antigen) with known antiserum:

 - **Capsular swelling (Quelling) reaction:** The capsule swells up when comes in touch with specific antiserum. Reaction is positive with *Streptococcus pneumoniae*, *Homophiles influenza*, *Niesseria meningitides*.

 - **Slide agglutination test:** Used to identify Salmonella & Shigella, looking for O, H, & Vi antigens.

 - **Latex agglutination test:** The test is used in diagnosis of *H. influenzae*, *N. meningitidis*, *Cryptococcus neoformans* (yeast).

 - **Counter immunoelectrophoresis test:** The unknown bacterial antigen and the known specific antibody move towards each other and form a precipitate. The test is used to diagnose CSF pathogens, e.g.: *H. influenzae*, *N. meningitidis*, *S. pneumoniae*.

 - **ELISA:** Used to diagnosis *Cotynebacterium diphtheria* infections (Diphtheria)- Meningitis

 - **Fluorescent - antibody test:** the known antibody is labeled with a fluorescent dye & detected by an U.V.microscope, either directly or indirectly when antibody unites with antigen.
2. Identification of serum antibodies (unknown) with known antigens:

- **Slide & tube agglutination test:** Serial dilution is made for patient serum and then bacterial antigen is added. Highest dilution of serum with agglutination shows the titre.
 This test is to diagnose: enteric fever, brucellosis, plague and rickettsial diseases.

- **Cold agglutinin test:** Patients infected with *Mycoplasma pneumoniae* will develop autoimmune antibodies that agglutinate human RBC at 4°C but not at 37°C.

- **Seroological tests for syphilis:** Include:
 1. Non-treponemal tests: using cardiolipin antigen: Rapid plasma regain (RPR) and VDRL tests.
 2. Treponemal tests: such as immobilizing test
Classical bacterial identification can be performed on pure cultures of bacteria

Isolation of Individual Bacteria

Specimen is “streaked”, using a sterile loop, onto solid media. The agar plates (media) are incubated at appropriate temperature and atmosphere

- Often at 35°C.
- Often at 5% CO₂
- Usually first examined after 24 hours

“Streaking a Plate”

Isolation techniques include:

- Streak plate technique
- Pour plate technique
- Spread plate technique
Bacterial Isolation

(a) Mixed sample

(b) General-purpose nonselective medium (All species grow.)

(c) Selective medium (One species grows.)

(d) Loop containing sample

(e) Steps in a Streak Plate; this one is a four-part or quadrant streak.

(f) Steps in Loop Dilution; also called a pour plate or serial dilution.

Note: This method only works if the spreading tool (usually an inoculating loop) is sanitized (flamed) after each of steps 1-4.

(g) Steps in a Spread Plate

(h) 'Hockey stick'

(i) Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Growth of Colonies

- **Bacterial Colony**
 - Result of one bacterium being isolated from others during “streaking procedure”
 - That bacterium grows in numbers exponentially (colonies)
 - Some bacteria have rapid generation time of 20 minutes such as E. coli. Mycobacterium tuberculosis grow slowly.

Colonies “Picking” Sterile loop is touched to surface of colony and transferred to fresh, sterile media and incubation for 24 hours

Now we have a pure culture of bacteria
Testing is now done to confirm the identification of the bacteria culture

- **Stains**
- **Biochemical tests**
- **Serological tests (using known antibodies)**
- **Molecular tests (nucleic acid probes)**
Examples of Biochemical Tests

Klebsiella pneumoniae & *Staphylococcus aureus*
Gram-negative rods and gram-positive cocci

E. coli gram stain, gram negative rods

Antimicrobial Sensitivity Test

API20E Strip
Factors limiting usefulness of bacteriological investigations

- wrong sample (e.g. saliva instead of sputum)
- delay in transport sample/ inappropriate storage (e.g. CSF)
- overgrowth by contaminants (e.g. blood cultures)
- insufficient sample / sampling error (e.g. in Mycobacterial disease)
- patient has received antibiotics
Sensitivity tests

on solid media (disc diffusion technique)

in liquid media (minimum inhibitory concentration (MIC)- (MBC) tests

Breakpoint methods (E-test)

E-test