GENERAL MATHEMATICS 2

Dr. M. Alghamdi
Department of Mathematics

September 16, 2022

Chapter 1: CONIC SECTIONS

Main Contents

(1) Parabola
(2) Ellipse
(3) Hyperbola

Section 3: Hyperbola

Definition

A hyperbola is the set of all points in a plane such that the absolute value of the difference of the distances of each point from two fixed points (called foci) is constant.

- Each fixed point mentioned in the previous definition is called a focus.
- The point midway between the foci is called the center. The line containing the foci is the transverse axis.
- The graph of the hyperbola is made up of two parts called branches. Each branch intersects the transverse axis at a point called the vertex.

Section 3: Hyperbola

(1) Hyperbolas with Centers Located at the Origin Point
(A) The equation of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.

The hyperbola has the following features:

- The center is $P(0,0)$.
- The vertices are $V_{1}(a, 0), V_{2}(-a, 0)$.
- The foci are $F_{1}(c, 0), F_{2}(-c, 0)$, where

$$
c=\sqrt{a^{2}+b^{2}}
$$

- The transverse axis is x-axis with length $2 a$.
- The asymptotes are $y= \pm \frac{b}{a} x$.

Section 3: Hyperbola

(B) The equation of the hyperbola $\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1$.

The hyperbola has the following features:

- The center is $P(0,0)$.
- The vertices are $V_{1}(0, b), V_{2}(0,-b)$.
- The foci are $F_{1}(0, c), F_{2}(0,-c)$, where

$$
c=\sqrt{a^{2}+b^{2}}
$$

- The transverse axis is x-axis with length $2 b$.
- The asymptotes are $y= \pm \frac{b}{a} x$.

Section 3: Hyperbola

Example

Identify the features of the hyperbola $4 x^{2}-16 y^{2}=64$ and sketch its graph.

Section 3: Hyperbola

Example

Identify the features of the hyperbola $4 x^{2}-16 y^{2}=64$ and sketch its graph.
Solution:

$$
\begin{gathered}
4 x^{2}-16 y^{2}=64 \overbrace{\Rightarrow}^{\text {divide by } 64} \frac{4 x^{2}}{64}-\frac{16 y^{2}}{64}=\frac{64}{64} \Rightarrow \frac{x^{2}}{16}-\frac{y^{2}}{4}=1 \\
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
\end{gathered}
$$

Section 3: Hyperbola

Example

Identify the features of the hyperbola $4 x^{2}-16 y^{2}=64$ and sketch its graph.
Solution:

$$
\begin{gathered}
4 x^{2}-16 y^{2}=64 \overbrace{\Rightarrow}^{\text {divide by }} \frac{64}{\frac{4 x^{2}}{64}-\frac{16 y^{2}}{64}=\frac{64}{64} \Rightarrow \frac{x^{2}}{16}-\frac{y^{2}}{4}=1} \\
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
\end{gathered}
$$

$$
a^{2}=16 \Rightarrow a=4,
$$

Section 3: Hyperbola

Example

Identify the features of the hyperbola $4 x^{2}-16 y^{2}=64$ and sketch its graph.
Solution:

$$
\begin{aligned}
4 x^{2}-16 y^{2}=64 & \overbrace{\Rightarrow}^{\Rightarrow}
\end{aligned} \frac{6 x^{2}}{64}-\frac{16 y^{2}}{64}=\frac{64}{64} \Rightarrow \frac{x^{2}}{16}-\frac{y^{2}}{4}=1 .
$$

Section 3: Hyperbola

Example

Identify the features of the hyperbola $4 x^{2}-16 y^{2}=64$ and sketch its graph.
Solution:

$$
\begin{aligned}
& 4 x^{2}-16 y^{2}=64 \overbrace{\Rightarrow}^{\text {divide by }} \frac{64}{} \frac{4 x^{2}}{64}-\frac{16 y^{2}}{64}=\frac{64}{64} \Rightarrow \frac{x^{2}}{16}-\frac{y^{2}}{4}=1 \\
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \\
& a^{2}=16 \Rightarrow a=4, b^{2}=4 \Rightarrow b= 2 \Rightarrow c=\sqrt{a^{2}+b^{2}}=\sqrt{16+4}=\sqrt{20}=2 \sqrt{5}
\end{aligned}
$$

Section 3: Hyperbola

Example

Identify the features of the hyperbola $4 x^{2}-16 y^{2}=64$ and sketch its graph.
Solution:

$$
\begin{aligned}
& 4 x^{2}-16 y^{2}=64 \overbrace{\Rightarrow}^{\text {divide by }} \frac{64}{} \frac{4 x^{2}}{64}-\frac{16 y^{2}}{64}=\frac{64}{64} \Rightarrow \frac{x^{2}}{16}-\frac{y^{2}}{4}=1 \\
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \\
& a^{2}=16 \Rightarrow a=4, b^{2}=4 \Rightarrow b= 2 \Rightarrow c=\sqrt{a^{2}+b^{2}}=\sqrt{16+4}=\sqrt{20}=2 \sqrt{5}
\end{aligned}
$$

The hyperbola has the following features:

- The center is $P(0,0)$
- The vertices are $V_{1}(4,0), V_{2}(-4,0)$.
- The foci are $F_{1}(2 \sqrt{5}, 0), F_{2}(-2 \sqrt{5}, 0)$.
- The transverse axis is x-axis with length 8 .
- The asymptotes are
$y= \pm \frac{2}{4} x= \pm \frac{1}{2} x \Rightarrow y= \pm \frac{1}{2}$.

Section 3: Hyperbola

(1) Hyperbolas with Centers Located at the Origin

Point (A) $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.

- The center is $P(0,0)$.
- The vertices are $V_{1}(a, 0), V_{2}(-a, 0)$.
- The foci are $F_{1}(c, 0), F_{2}(-c, 0)$, where

$$
c=\sqrt{a^{2}+b^{2}} .
$$

- The transverse axis is x-axis with length 2a.
- The asymptotes are $y= \pm \frac{b}{a} x$.
(2) Hyperbolas with Centers Not at the Origin
(A) $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$.

- The center is $P(h, k)$
- The vertices are $V_{1}(h+a, k), V_{2}(h-a, k)$.
- The foci are $F_{1}(h+c, k), F_{2}(h-c, k)$, where

$$
c=\sqrt{a^{2}+b^{2}} .
$$

- The transverse axis is parallel to x-axis with length $2 a$.
- The asymptotes are $(y-k)= \pm \frac{b}{a}(x-h)$.

Section 3: Hyperbola

(1) Hyperbolas with Centers Located at the Origin Point
(B) $\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1$.

- The center is $P(0,0)$.
- The vertices are $V_{1}(0, b), V_{2}(0,-b)$.
- The foci are $F_{1}(0, c), F_{2}(0,-c)$, where

$$
c=\sqrt{a^{2}+b^{2}}
$$

- The transverse axis is x-axis with length $2 b$.
- The asymptotes are $y= \pm \frac{b}{a} x$.
(2) Hyperbolas with Centers Not at the Origin
(B) $\frac{(y-h)^{2}}{b^{2}}-\frac{(x-k)^{2}}{a^{2}}=1$.

- The center is $P(h, k)$
- The vertices are $V_{1}(h, k+b), V_{2}(h, k-b)$.
- The foci are $F_{1}(h, k+c), F_{2}(h, k-c)$, where

$$
c=\sqrt{a^{2}+b^{2}}
$$

- The transverse axis is x-axis with length $2 b$.
- The asymptotes are $(y-k)= \pm \frac{b}{a}(x-h)$.

Section 3: Hyperbola

Example

Find the equation of the hyperbola with foci at $(-2,2),(6,2)$ and one of its vertices is $(5,2)$, then sketch its graph.

Section 3: Hyperbola

Example

Find the equation of the hyperbola with foci at $(-2,2),(6,2)$ and one of its vertices is $(5,2)$, then sketch its graph.
Solution:
Since the y-term in the foci is constant, then the equation of the hyperbola takes the form

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Section 3: Hyperbola

Example

Find the equation of the hyperbola with foci at $(-2,2),(6,2)$ and one of its vertices is $(5,2)$, then sketch its graph.

Solution:

Since the y-term in the foci is constant, then the equation of the hyperbola takes the form

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

From the given foci, we have

$$
\begin{gathered}
F_{1}(h+c, k)=(6,2) \Rightarrow h+c=6, k=2 \\
F_{2}(h-c, k)=(-2,2) \Rightarrow h-c=-2, k=2
\end{gathered}
$$

By doing some calculation, we obtain $h=2$ and $c=4$.

Section 3: Hyperbola

Example

Find the equation of the hyperbola with foci at $(-2,2),(6,2)$ and one of its vertices is $(5,2)$, then sketch its graph.

Solution:

Since the y-term in the foci is constant, then the equation of the hyperbola takes the form

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

From the given foci, we have

$$
\begin{gathered}
F_{1}(h+c, k)=(6,2) \Rightarrow h+c=6, k=2 \\
F_{2}(h-c, k)=(-2,2) \Rightarrow h-c=-2, k=2
\end{gathered}
$$

By doing some calculation, we obtain $h=2$ and $c=4$.

From

$$
V_{1}(h+a, k)=(5,2) \Rightarrow h+a=5 \Rightarrow 2+a=5 \Rightarrow a=3
$$

Section 3: Hyperbola

Example

Find the equation of the hyperbola with foci at $(-2,2),(6,2)$ and one of its vertices is $(5,2)$, then sketch its graph.

Solution:

Since the y-term in the foci is constant, then the equation of the hyperbola takes the form

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

From the given foci, we have

$$
\begin{gathered}
F_{1}(h+c, k)=(6,2) \Rightarrow h+c=6, k=2 \\
F_{2}(h-c, k)=(-2,2) \Rightarrow h-c=-2, k=2
\end{gathered}
$$

By doing some calculation, we obtain $h=2$ and $c=4$.

From

$$
V_{1}(h+a, k)=(5,2) \Rightarrow h+a=5 \Rightarrow 2+a=5 \Rightarrow a=3
$$

From the formula

$$
c^{2}=a^{2}+b^{2} \Rightarrow b^{2}=c^{2}-a^{2} \Rightarrow b^{2}=16-9=7 \Rightarrow b=\sqrt{7}
$$

Section 3: Hyperbola

Example

Find the equation of the hyperbola with foci at $(-2,2),(6,2)$ and one of its vertices is $(5,2)$, then sketch its graph.

Solution:

Since the y-term in the foci is constant, then the equation of the hyperbola takes the form

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

From the given foci, we have

$$
\begin{gathered}
F_{1}(h+c, k)=(6,2) \Rightarrow h+c=6, k=2 \\
F_{2}(h-c, k)=(-2,2) \Rightarrow h-c=-2, k=2
\end{gathered}
$$

By doing some calculation, we obtain $h=2$ and $c=4$.

From

$$
V_{1}(h+a, k)=(5,2) \Rightarrow h+a=5 \Rightarrow 2+a=5 \Rightarrow a=3
$$

From the formula

$$
c^{2}=a^{2}+b^{2} \Rightarrow b^{2}=c^{2}-a^{2} \Rightarrow b^{2}=16-9=7 \Rightarrow b=\sqrt{7}
$$

Thus, the equation of the hyperbola is

$$
\frac{(x-2)^{2}}{9}-\frac{(y-2)^{2}}{7}=1
$$

Section 3: Hyperbola

Remember:

$$
\frac{(x-2)^{2}}{9}+\frac{(y-2)^{2}}{7}=1
$$

- Vertices: $V(h \pm a, k)$

$$
a^{2}=9 \Rightarrow a=3, b^{2}=7 \Rightarrow b=\sqrt{7}, c=4, h=2, k=2
$$

- Foci: $F(h \pm c, k)$

■ The asymptotes: $(y-k)= \pm \frac{b}{a}(x-h)$.

The hyperbola has the following features:

- The center is $P(2,2)$
- The vertices are $V_{1}(5,2), V_{2}(-1,2)$.
- The foci are $F_{1}(6,2), F_{2}(-4,2)$.
- The transverse axis is parallel to x-axis with length 6 .
- The asymptotes are $(y-2)= \pm \frac{\sqrt{7}}{3}(x-2)$.

Section 3: Hyperbola

Example

Identify the features of the hyperbola $2 y^{2}-4 x^{2}-4 y-8 x-34=0$, then sketch its graph.
Solution:

$$
\begin{aligned}
2 y^{2}-4 x^{2}-4 y-8 x-34 & =0, \\
2 y^{2}-4 y-4 x^{2}-8 x & =34 \\
2\left(y^{2}-2 y\right)-4\left(x^{2}+2 x\right) & =34 \quad \text { rearrange } x \text {-terms and } y \text {-terms } \\
2\left(y^{2}-2 y+1\right)-4\left(x^{2}+2 x+1\right) & =34+2-4 \quad \text { complete the square } \\
2(y-1)^{2}-4(x+1)^{2} & =32 \quad(u \pm v)^{2}=u^{2} \pm 2 u v+v^{2} \\
\frac{(y-1)^{2}}{16}-\frac{(x+1)^{2}}{8} & =1 \quad \text { divide both sides by } 40 .
\end{aligned}
$$

From the standard form

$$
\begin{gathered}
\frac{(y-k)^{2}}{b^{2}}-\frac{(x-h)^{2}}{a^{2}}=1 \\
h=-1, k=1, a^{2}=8 \Rightarrow a=\sqrt{8}=2 \sqrt{2}, \quad b^{2}=16 \Rightarrow b=4
\end{gathered}
$$

From the formula

$$
c^{2}=a^{2}+b^{2} \Rightarrow c^{2}=8+16=24 \Rightarrow c=2 \sqrt{6}
$$

