GENERAL MATHEMATICS 2

Dr. M. Alghamdi
Department of Mathematics

September 10, 2022

Chapter 1: CONIC SECTIONS

Main Contents

(1) Parabola
(2) Ellipse
(3) Hyperbola

Section 1: Parabola

Definition

A parabola is a set of all points in a plane that are equidistant from a fixed point F (called the focus) and a fixed line D (called the directrix) in the same plane.

Section 1: Parabola

(1) Vertical Parabolas

(A) Parabolas with the Vertex at the Origin $x^{2}= \pm 4 a y$, where $a>0$.
(A.1) The equation $x^{2}=4$ a y has the following features:

- The vertex is at the origin $V(0,0)$.
- The parabola opens upwards.
- The axis of symmetry is y-axis.
- The focus is $F(0, a)$.
- The directrix is $D: y=-a$.
(A.2) The equation $x^{2}=-4 a y$ has the following features:
- The vertex is at the origin $V(0,0)$.
- The parabola opens downwards.
- The axis of symmetry is y-axis.
- The focus is $F(0,-a)$.
- The directrix is $D: y=a$.

Section 1: Parabola

Example

Find the focus and the directrix of the parabola $x^{2}=4 y$, and sketch its graph.

Section 1: Parabola

Example

Find the focus and the directrix of the parabola $x^{2}=4 y$, and sketch its graph.

Solution:

The equation

$$
x^{2}=4 y
$$

takes the form

$$
\begin{gathered}
x^{2}=4 a y \\
\Rightarrow 4 a=4 \Rightarrow a=1
\end{gathered}
$$

Section 1: Parabola

Example

Find the focus and the directrix of the parabola $x^{2}=4 y$, and sketch its graph.
Solution:
The equation

$$
\begin{gathered}
x^{2}=4 y \\
x^{2}=4 \text { a } y \\
\Rightarrow 4 a=4 \Rightarrow a=1
\end{gathered}
$$

takes the form

The parabola has the following features:

- The vertex is $V(0,0)$.
- The parabola opens upwards.
- The axis of symmetry is y-axis.
- The focus is $F(0,1)$.
- The directrix is $D: y=-1$.

Section 1: Parabola

Special case

$$
x^{2}=4 a y
$$

- The vertex is at the origin $V(0,0)$.
- The parabola opens upwards.
- The axis of symmetry is y-axis.
- The focus is $F(0, a)$.
- The directrix is $D: y=-a$.

General case:

$$
(x-h)^{2}=4 a(y-k)
$$

- The vertex is the point $V(h, k)$.
- The parabola opens upwards.
- The axis of symmetry is parallel to y-axis.
- The focus is $F(h, k+a)$.
- The directrix is $D: y=k-a$.

Section 1: Parabola

Special case

$$
x^{2}=-4 a y
$$

- The vertex is at the origin $V(0,0)$.
- The parabola opens downwards.
- The axis of symmetry is y-axis.
- The focus is $F(0,-a)$.
- The directrix is $D: y=a$.

General case:

$$
(x-h)^{2}=-4 a(y-k)
$$

- The vertex is the point $V(h, k)$.
- The parabola opens downwards.
- The axis of symmetry is parallel to y-axis.
- The focus is $F(h, k-a)$.
- The directrix is $D: y=k+a$.

Section 1: Parabola

Example

Find the focus and the directrix of the parabola $(x+1)^{2}=-4(y-1)$, and sketch its graph.

Section 1: Parabola

Example

Find the focus and the directrix of the parabola $(x+1)^{2}=-4(y-1)$, and sketch its graph.
Solution: The equation

$$
(x+1)^{2}=-4(y-1)
$$

takes the form

$$
(x-h)^{2}=-4 a(y-k)
$$

Section 1: Parabola

Example

Find the focus and the directrix of the parabola $(x+1)^{2}=-4(y-1)$, and sketch its graph.
Solution: The equation

$$
(x+1)^{2}=-4(y-1)
$$

takes the form

$$
\begin{gathered}
(x-h)^{2}=-4 a(y-k) \\
-h=1 \Rightarrow h=-1, k=1 \text { and } 4 a=4 \Rightarrow a=1
\end{gathered}
$$

Section 1: Parabola

Example

Find the focus and the directrix of the parabola $(x+1)^{2}=-4(y-1)$, and sketch its graph.
Solution: The equation

$$
(x+1)^{2}=-4(y-1)
$$

takes the form

$$
\begin{gathered}
(x-h)^{2}=-4 a(y-k) \\
-h=1 \Rightarrow h=-1, k=1 \text { and } 4 a=4 \Rightarrow a=1
\end{gathered}
$$

The parabola has the following features:

- The vertex is $V(h, k)=V(-1,1)$.
- The parabola opens downwards.
- The axis of symmetry is parallel to y-axis.
- The focus is $F(h, k-a)=F(-1,0)$.
- The directrix is $D: y=k+a \Rightarrow D: y=2$.

Section 1: Parabola

Example

Find the equation of the parabola with vertex $(2,1)$ and focus $F(2,3)$. Then, sketch the graph.

Section 1: Parabola

Example

Find the equation of the parabola with vertex $(2,1)$ and focus $F(2,3)$. Then, sketch the graph.

Solution:

1. The vertex and the focus are on the same line $x=2$ (the x-term of the two points is constant), so the axis of symmetry of the parabola is parallel to y-axis.
2. From the y-term of the vertex and the focus, the parabola opens upwards.

Thus, the parabola equation takes the form

$$
(x-h)^{2}=4 a(y-k)
$$

Section 1: Parabola

Example

Find the equation of the parabola with vertex $(2,1)$ and focus $F(2,3)$. Then, sketch the graph.

Solution:

1. The vertex and the focus are on the same line $x=2$ (the x-term of the two points is constant), so the axis of symmetry of the parabola is parallel to y-axis.
2. From the y-term of the vertex and the focus, the parabola opens upwards.

Thus, the parabola equation takes the form

$$
(x-h)^{2}=4 a(y-k)
$$

From the vertex and focus, we have

$$
\begin{gathered}
V(h, k)=(2,1) \Rightarrow h=2 \text { and } k=1 \\
F(h, k+a)=(2,3) \Rightarrow 1+a=3 \Rightarrow a=2
\end{gathered}
$$

By substituting the values of a, h and k, the equation of the parabola becomes

$$
(x-2)^{2}=8(y-1)
$$

Section 1: Parabola

(2) Horizontal Parabolas

(A) Parabolas with the Vertex at the Origin $y^{2}= \pm 4 a x$, where $a>0$.
(A.1) The equation $y^{2}=4 a x$ has the following features:

- The vertex is at the origin $V(0,0)$.
- The parabola opens to the right.
- The axis of symmetry is x-axis.
- The focus is $F(a, 0)$.
- The directrix is $D: x=-a$.

(A.2) The equation $y^{2}=-4 a x$ has the following properties:
- The vertex is at the origin $V(0,0)$.
- The parabola opens to the left.
- The axis of symmetry is x-axis.
- The focus is $F(-a, 0)$.
- The directrix is $D: x=a$.

Section 1: Parabola

Example

Find the focus and the directrix of the parabola $y^{2}=-8 x$, and sketch its graph.

Section 1: Parabola

Example

Find the focus and the directrix of the parabola $y^{2}=-8 x$, and sketch its graph.
Solution:
The equation

$$
y^{2}=-8 x
$$

takes the form

$$
y^{2}=-4 a x
$$

Section 1: Parabola

Example

Find the focus and the directrix of the parabola $y^{2}=-8 x$, and sketch its graph.
Solution:
The equation

$$
\begin{gathered}
y^{2}=-8 x \\
y^{2}=-4 a x \\
\Rightarrow 4 a=8 \Rightarrow a=2
\end{gathered}
$$

takes the form

Section 1: Parabola

Example

Find the focus and the directrix of the parabola $y^{2}=-8 x$, and sketch its graph.
Solution:
The equation

$$
\begin{aligned}
y^{2} & =-8 x \\
y^{2} & =-4 a x \\
\Rightarrow 4 a & =8 \Rightarrow a=2
\end{aligned}
$$

takes the form

The parabola has the following features:

- The vertex is $V(0,0)$.
- The parabola opens to the left.
- The axis of symmetry is x-axis.
- The focus is $F(-2,0)$.
- The directrix is $D: x=2$.

Section 1: Parabola

Special case

$$
y^{2}=4 a x
$$

- The vertex is the point $V(0,0)$.
- The parabola opens to the right.
- The axis of symmetry is x-axis.
- The focus is $F(a, 0)$.
- The directrix is $D: x=-a$.

General case:

$$
(y-k)^{2}=4 a(x-h)
$$

- The vertex is the point $V(h, k)$.
- The parabola opens to the right.
- The axis of symmetry is parallel to x-axis.
- The focus is $F(h+a, k)$.
- The directrix is $D: x=h-a$.

Section 1: Parabola

Special case

$$
y^{2}=-4 a x
$$

- The vertex is at the origin $V(0,0)$.
- The parabola opens to the left.
- The axis of symmetry is x-axis.
- The focus is $F(-a, 0)$.
- The directrix is $D: x=a$.

General case:

$$
(y-k)^{2}=-4 a(x-h)
$$

- The vertex is the point $V(h, k)$.
- The parabola opens to the left.
- The axis of symmetry is parallel to x-axis.
- The focus is $F(h-a, k)$.
- The directrix is $D: x=h+a$.

Section 1: Parabola

Example

Find the focus and the directrix of the parabola $2 y^{2}-4 y+8 x+10=0$, and sketch its graph.

Section 1: Parabola

Example

Find the focus and the directrix of the parabola $2 y^{2}-4 y+8 x+10=0$, and sketch its graph.
Solution: Since the quadrature is on the y-term, the parabola takes the form $(y-k)^{2}= \pm 4 a(x-h)$.

Section 1: Parabola

Example

Find the focus and the directrix of the parabola $2 y^{2}-4 y+8 x+10=0$, and sketch its graph.
Solution: Since the quadrature is on the y-term, the parabola takes the form $(y-k)^{2}= \pm 4 a(x-h)$.

$$
\begin{aligned}
2 y^{2}-4 y+8 x+10 & =0, \quad \text { divide all terms by } 2 \\
y^{2}-2 y+4 x+5 & =0, \\
y^{2}-2 y & =-4 x-5, \quad \text { isolate } y \text {-terms } \\
\underbrace{\left(y^{2}-2 y+1\right)}_{\text {completing square }} & =-4 x-5+1 \quad(u \pm v)^{2}=u^{2} \pm 2 u v+v^{2} \\
(y-1)^{2} & =-4 x-4 \\
(y-1)^{2} & =-4(x+1) \quad(y-k)^{2}=-4 a(x-h)
\end{aligned}
$$

Section 1: Parabola

Example

Find the focus and the directrix of the parabola $2 y^{2}-4 y+8 x+10=0$, and sketch its graph.
Solution: Since the quadrature is on the y-term, the parabola takes the form $(y-k)^{2}= \pm 4 a(x-h)$.

$$
\begin{aligned}
2 y^{2}-4 y+8 x+10 & =0, \\
y^{2}-2 y+4 x+5 & =0, \\
y^{2}-2 y & =-4 x-5, \quad \text { divide all terms by } 2 \\
\underbrace{\left(y^{2}-2 y+1\right)}_{\text {completing square }}= & -4 x-5+1 \quad(u \pm v)^{2}=u^{2} \pm 2 u v+v^{2} \\
(y-1)^{2}= & -4 x-4 \\
(y-1)^{2}= & -4(x+1) \quad(y-k)^{2}=-4 a(x-h) \\
& (y-1)^{2}=-4(x+1) \\
& (y-k)^{2}=-4 a(x-h) \\
& h=-1, k=1, a=1
\end{aligned}
$$

Section 1: Parabola

$$
\begin{gathered}
(y-1)^{2}=-4(x+1) \\
(y-k)^{2}=-4 a(x-h) \\
h=-1, k=1, a=1
\end{gathered}
$$

The parabola has the following properties:

- The vertex is $V(h, k)=V(-1,1)$.
- The parabola opens to the left.
- The axis of symmetry is parallel to x-axis.
- The focus is $F(h-a, k)=F(-2,1)$.
- The directrix is $D: x=h+a \Rightarrow D: x=0$.

