GENERAL MATHEMATICS 2

Dr. M. Alghamdi

Department of Mathematics

November 3, 2022

Chapter 7: DIFFERENTIAL EQUATIONS

Main Contents

(1) Definition of Differential Equations
(2) Separable Differential Equations

Definition of Differential Equations

(1) A differential equation is an equation which contains derivatives of the unknown.
(2) There are two classes of the differential equations:

- Ordinary Differential Equations (O.D.E.)
- Partial Differential Equations (P.D.E.).

We only consider the ordinary differential equations.

Definition of Differential Equations

(1) A differential equation is an equation which contains derivatives of the unknown.
(2) There are two classes of the differential equations:

- Ordinary Differential Equations (O.D.E.)
- Partial Differential Equations (P.D.E.).

We only consider the ordinary differential equations.

Definition

An equation that involves $x, y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}, y^{(4)}, \ldots, y^{(n)}$ for a function $y(x)$ with $n^{\text {th }}$ derivative of y with respect to x is an ordinary differential equation of order n.

Definition of Differential Equations

(1)

A differential equation is an equation which contains derivatives of the unknown.
(2) There are two classes of the differential equations:

- Ordinary Differential Equations (O.D.E.)
- Partial Differential Equations (P.D.E.).

We only consider the ordinary differential equations.

Definition

An equation that involves $x, y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}, y^{(4)}, \ldots, y^{(n)}$ for a function $y(x)$ with $n^{\text {th }}$ derivative of y with respect to x is an ordinary differential equation of order n.

Example

(1) $y^{\prime}=x^{2}+5$ is a differential equation of order 1 .
(2) $y^{\prime \prime}+x\left(y^{\prime}\right)^{3}-y=x$ is a differential equation of order 2 .
(3) $\left(y^{(4)}\right)^{3}+x^{2} y^{\prime \prime}=2 x$ is a differential equation of order 4 .

Definition of Differential Equations

Notes:

(1) $y=y(x)$ is called a solution of a differential equation if it satisfies that differential equation.
(2) $y=y(x)+c$ is the general solution of the differential equation.
(3) If an initial condition was added to the differential equation to assign a certain value for c, then $y=y(x)$ is called the particular solution of the differential equation.

Definition of Differential Equations

Notes:

(1) $y=y(x)$ is called a solution of a differential equation if it satisfies that differential equation.
(2)
$y=y(x)+c$ is the general solution of the differential equation.
(3)

If an initial condition was added to the differential equation to assign a certain value for c, then $y=y(x)$ is called the particular solution of the differential equation.

Example

Verify that $y=4 x^{3}+2 x^{2}+x$ is a solution of the differential equation $y^{\prime}=12 x^{2}+4 x+1$. Then, with the initial condition $y(0)=2$, find the particular solution of the equation.

Definition of Differential Equations

Notes:

(1) $y=y(x)$ is called a solution of a differential equation if it satisfies that differential equation.
(2)
$y=y(x)+c$ is the general solution of the differential equation.
(3)

If an initial condition was added to the differential equation to assign a certain value for c, then $y=y(x)$ is called the particular solution of the differential equation.

Example

Verify that $y=4 x^{3}+2 x^{2}+x$ is a solution of the differential equation $y^{\prime}=12 x^{2}+4 x+1$. Then, with the initial condition $y(0)=2$, find the particular solution of the equation.

Solution: (1) The general solution:

$$
y=4 x^{3}+2 x^{2}+x
$$

Definition of Differential Equations

Notes:

(1) $y=y(x)$ is called a solution of a differential equation if it satisfies that differential equation.

2
$y=y(x)+c$ is the general solution of the differential equation.
(3)

If an initial condition was added to the differential equation to assign a certain value for c, then $y=y(x)$ is called the particular solution of the differential equation.

Example

Verify that $y=4 x^{3}+2 x^{2}+x$ is a solution of the differential equation $y^{\prime}=12 x^{2}+4 x+1$. Then, with the initial condition $y(0)=2$, find the particular solution of the equation.

Solution: (1) The general solution:

$$
y=4 x^{3}+2 x^{2}+x \Rightarrow y^{\prime}=12 x^{2}+4 x+1
$$

This is the given differential equation, so $y=4 x^{3}+2 x^{2}+x+c$ is the general solution of the given differential equation.

Definition of Differential Equations

Notes:

(1) $y=y(x)$ is called a solution of a differential equation if it satisfies that differential equation.
(2)
$y=y(x)+c$ is the general solution of the differential equation.
(3) If an initial condition was added to the differential equation to assign a certain value for c, then $y=y(x)$ is called the particular solution of the differential equation.

Example

Verify that $y=4 x^{3}+2 x^{2}+x$ is a solution of the differential equation $y^{\prime}=12 x^{2}+4 x+1$. Then, with the initial condition $y(0)=2$, find the particular solution of the equation.

Solution: (1) The general solution:

$$
y=4 x^{3}+2 x^{2}+x \Rightarrow y^{\prime}=12 x^{2}+4 x+1
$$

This is the given differential equation, so $y=4 x^{3}+2 x^{2}+x+c$ is the general solution of the given differential equation.
(2) The particular solution:

$$
y(0)=2
$$

Definition of Differential Equations

Notes:

(1) $y=y(x)$ is called a solution of a differential equation if it satisfies that differential equation.
(2) $y=y(x)+c$ is the general solution of the differential equation.
(3) If an initial condition was added to the differential equation to assign a certain value for c, then $y=y(x)$ is called the particular solution of the differential equation.

Example

Verify that $y=4 x^{3}+2 x^{2}+x$ is a solution of the differential equation $y^{\prime}=12 x^{2}+4 x+1$. Then, with the initial condition $y(0)=2$, find the particular solution of the equation.

Solution: (1) The general solution:

$$
y=4 x^{3}+2 x^{2}+x \Rightarrow y^{\prime}=12 x^{2}+4 x+1
$$

This is the given differential equation, so $y=4 x^{3}+2 x^{2}+x+c$ is the general solution of the given differential equation.
(2) The particular solution:

$$
y(0)=2 \Rightarrow 4(0)^{3}+2(0)^{2}+0+c=2 \Rightarrow c=2 .
$$

Definition of Differential Equations

Notes:

(1) $y=y(x)$ is called a solution of a differential equation if it satisfies that differential equation.
(2) $y=y(x)+c$ is the general solution of the differential equation.
(3) If an initial condition was added to the differential equation to assign a certain value for c, then $y=y(x)$ is called the particular solution of the differential equation.

Example

Verify that $y=4 x^{3}+2 x^{2}+x$ is a solution of the differential equation $y^{\prime}=12 x^{2}+4 x+1$. Then, with the initial condition $y(0)=2$, find the particular solution of the equation.

Solution: (1) The general solution:

$$
y=4 x^{3}+2 x^{2}+x \Rightarrow y^{\prime}=12 x^{2}+4 x+1
$$

This is the given differential equation, so $y=4 x^{3}+2 x^{2}+x+c$ is the general solution of the given differential equation.
(2) The particular solution:

$$
y(0)=2 \Rightarrow 4(0)^{3}+2(0)^{2}+0+c=2 \Rightarrow c=2 .
$$

Therefore, $y=4 x^{3}+2 x^{2}+x+2$ is the particular solution of the differential equation $y^{\prime}=12 x^{2}+4 x+1$.

Separable Differential Equations

A differential equation is separable if the equation can be written in one of the following forms:

$$
M(x)+N(y) y^{\prime}=0 \quad \text { OR } \quad M(x)+N(y) \frac{d y}{d x}=0
$$

where $M(x)$ and $N(y)$ are continuous functions and $y^{\prime}=\frac{d y}{d x}$.

Separable Differential Equations

A differential equation is separable if the equation can be written in one of the following forms:

$$
M(x)+N(y) y^{\prime}=0 \quad \text { OR } \quad M(x)+N(y) \frac{d y}{d x}=0
$$

where $M(x)$ and $N(y)$ are continuous functions and $y^{\prime}=\frac{d y}{d x}$.
To solve the separable differential equation, we have the following steps:
(1) Write the equation as $M(x) d x+N(y) d y=0$. This implies $N(y) d y=-M(x) d x$.
(2) Integrate the left-hand side with respect to y and the right-hand side with respect to $x: \int N(y) d y=\int-M(x) d x$.
(3) Solve for y to write the solution in the form $y=y(x)$.

Separable Differential Equations

A differential equation is separable if the equation can be written in one of the following forms:

$$
M(x)+N(y) y^{\prime}=0 \quad \text { OR } \quad M(x)+N(y) \frac{d y}{d x}=0
$$

where $M(x)$ and $N(y)$ are continuous functions and $y^{\prime}=\frac{d y}{d x}$.
To solve the separable differential equation, we have the following steps:
(1) Write the equation as $M(x) d x+N(y) d y=0$. This implies $N(y) d y=-M(x) d x$.
(2) Integrate the left-hand side with respect to y and the right-hand side with respect to $x: \int N(y) d y=\int-M(x) d x$.
(3) Solve for y to write the solution in the form $y=y(x)$.

Example

Solve the differential equation $y^{\prime}-y^{2} e^{x}=0$.

Separable Differential Equations

A differential equation is separable if the equation can be written in one of the following forms:

$$
M(x)+N(y) y^{\prime}=0 \quad \text { OR } \quad M(x)+N(y) \frac{d y}{d x}=0
$$

where $M(x)$ and $N(y)$ are continuous functions and $y^{\prime}=\frac{d y}{d x}$.
To solve the separable differential equation, we have the following steps:
(1) Write the equation as $M(x) d x+N(y) d y=0$. This implies $N(y) d y=-M(x) d x$.
(2) Integrate the left-hand side with respect to y and the right-hand side with respect to x : $\int N(y) d y=\int-M(x) d x$.
(3) Solve for y to write the solution in the form $y=y(x)$.

Example

Solve the differential equation $y^{\prime}-y^{2} e^{x}=0$.

Solution: Manipulate the differential equation to become $N(y) d y=-M(x) d x$.

Separable Differential Equations

A differential equation is separable if the equation can be written in one of the following forms:

$$
M(x)+N(y) y^{\prime}=0 \quad \text { OR } \quad M(x)+N(y) \frac{d y}{d x}=0
$$

where $M(x)$ and $N(y)$ are continuous functions and $y^{\prime}=\frac{d y}{d x}$.
To solve the separable differential equation, we have the following steps:
(1) Write the equation as $M(x) d x+N(y) d y=0$. This implies $N(y) d y=-M(x) d x$.
(2) Integrate the left-hand side with respect to y and the right-hand side with respect to $x: \int N(y) d y=\int-M(x) d x$.
(3) Solve for y to write the solution in the form $y=y(x)$.

Example

Solve the differential equation $y^{\prime}-y^{2} e^{x}=0$.

Solution: Manipulate the differential equation to become $N(y) d y=-M(x) d x$.

$$
\begin{aligned}
y^{\prime}-y^{2} e^{x}=0 \Rightarrow \frac{d y}{d x}=y^{2} e^{x} & \Rightarrow \frac{d y}{y^{2}}=e^{x} d x \\
& \Rightarrow \int y^{-2} d y=\int e^{x} d x \quad \quad \text { integrate both sides } \\
& \Rightarrow \frac{y^{-1}}{-1}=e^{x}+c \Rightarrow \frac{1}{y}=-\left(e^{x}+c\right) \\
& \Rightarrow y(x)=-\frac{1}{e^{x}+c} . \quad \text { Solve, for yev } \quad \text { MATH } 104 \quad \text { November 3, 2022 } 5 / 7
\end{aligned}
$$

Separable Differential Equations

Example

Solve the differential equation $\frac{d y}{d x}=y x$, with $y(0)=1$.

Separable Differential Equations

Example

Solve the differential equation $\frac{d y}{d x}=y x$, with $y(0)=1$.

Solution: (1) The general solution:

Separable Differential Equations

Example

Solve the differential equation $\frac{d y}{d x}=y x$, with $y(0)=1$.

Solution: (1) The general solution: Write the differential equation in the form $N(y) d y=-M(x) d x$.

$$
\begin{aligned}
\frac{d y}{d x}= & y x & \Rightarrow \frac{d y}{y}=x d x & \\
& \Rightarrow \int \frac{1}{y} d y=\int x d x & & \text { integrate both sides Remember: } \int \frac{1}{x} d x=\ln |x|+c \\
& \Rightarrow \ln |y|=\frac{x^{2}}{2}+c & & \\
& \Rightarrow e^{\ln |y|}=e^{\frac{x^{2}}{2}+c} & & \text { solve for } y \text { by taking } e \text { for both sides } \\
& \Rightarrow y(x)=e^{\frac{x^{2}}{2}+c} & & \text { Remember: } \mathrm{e}^{\ln |y|}=y
\end{aligned}
$$

Separable Differential Equations

Example

Solve the differential equation $\frac{d y}{d x}=y x$, with $y(0)=1$.

Solution: (1) The general solution: Write the differential equation in the form $N(y) d y=-M(x) d x$.

$$
\begin{array}{rlrl}
\frac{d y}{d x}= & y x \Rightarrow \frac{d y}{y}=x d x & \\
& \Rightarrow \int \frac{1}{y} d y=\int x d x & & \text { integrate both sides Remember: } \int \frac{1}{x} d x=\ln |x|+c \\
& \Rightarrow \ln |y|=\frac{x^{2}}{2}+c & & \\
& \Rightarrow e^{\ln |y|}=e^{\frac{x^{2}}{2}+c} & & \text { solve for } y \text { by taking } e \text { for both sides } \\
& \Rightarrow y(x)=e^{\frac{x^{2}}{2}+c} & & \text { Remember: } \mathrm{e}^{\ln |y|}=y
\end{array}
$$

(2) The particular solution:

$$
\begin{array}{rlr}
y(0)=1 \Rightarrow e^{c}=1 & \Rightarrow \ln \left(e^{c}\right)=\ln (1) & \text { solve for } c \text { by taking } \ln \text { for both sides } \\
& \Rightarrow c \ln (e)=0 & \text { Remember: } \ln x^{r}=r \ln x \text { and } \ln (1)=0 \\
& \Rightarrow c(1)=0 & \text { Remember: } \ln e=1 \\
& \Rightarrow c=0 &
\end{array}
$$

The particular solution is $y(x)=e^{\frac{x^{2}}{2}}$.

Separable Differential Equations

Example

Solve the differential equation $d y-\left(1+y^{2}\right) \sin x d x=0$.

Separable Differential Equations

Example

Solve the differential equation $d y-\left(1+y^{2}\right) \sin x d x=0$.

Solution: Write the differential equation in the form $N(y) d y=-M(x) d x$.

$$
\begin{aligned}
d y-\left(1+y^{2}\right) \sin x d x=0 & \Rightarrow d y=\left(1+y^{2}\right) \sin x d x \\
& \Rightarrow \frac{d y}{1+y^{2}}=\sin x d x \\
& \Rightarrow \int \frac{1}{1+y^{2}} d y=\int \sin x d x \quad \text { integrate both sides } \\
& \Rightarrow \tan ^{-1} y=-\cos x+c \quad \text { Remember: } \int \frac{1}{1+x^{2}} d x=\tan ^{-1} x+c \\
& \Rightarrow y(x)=\tan (-\cos x+c) . \quad \text { solve for } y \text { by taking tan function for both sides }
\end{aligned}
$$

