GENERAL MATHEMATICS 2

Dr. M. Alghamdi

Department of Mathematics

November 3, 2022

Chapter 7: DIFFERENTIAL EQUATIONS

Main Contents
(1) First-Order Linear Differential Equations

First-Order Linear Differential Equations

The first-order linear differential equation has the form

$$
y^{\prime}+P(x) y=Q(x),
$$

where $P(x)$ and $Q(x)$ are continuous functions of x.

First-Order Linear Differential Equations

The first-order linear differential equation has the form

$$
y^{\prime}+P(x) y=Q(x),
$$

where $P(x)$ and $Q(x)$ are continuous functions of x.
To solve the first-order linear differential equation, we do the following steps:
(1) Compute the integrating factor $\mu(x)=e^{\int P(x) d x}$.
(2) Find the general solution by using the formula:

$$
y(x)=\frac{1}{\mu(x)} \int \mu(x) Q(x) d x
$$

First-Order Linear Differential Equations

The first-order linear differential equation has the form

$$
y^{\prime}+P(x) y=Q(x),
$$

where $P(x)$ and $Q(x)$ are continuous functions of x.
To solve the first-order linear differential equation, we do the following steps:
(1) Compute the integrating factor $\mu(x)=e^{\int P(x) d x}$.
(2) Find the general solution by using the formula:

$$
y(x)=\frac{1}{\mu(x)} \int \mu(x) Q(x) d x .
$$

Example

Solve the differential equation $x \frac{d y}{d x}+y=x^{2}+1$.

First-Order Linear Differential Equations

The first-order linear differential equation has the form

$$
y^{\prime}+P(x) y=Q(x),
$$

where $P(x)$ and $Q(x)$ are continuous functions of x.
To solve the first-order linear differential equation, we do the following steps:
(1) Compute the integrating factor $\mu(x)=e^{\int P(x) d x}$.
(2) Find the general solution by using the formula:

$$
y(x)=\frac{1}{\mu(x)} \int \mu(x) Q(x) d x .
$$

Example

Solve the differential equation $x \frac{d y}{d x}+y=x^{2}+1$.
Solution: Write the differential equation in the form $y^{\prime}+P(x) y=Q(x)$.

$$
x y^{\prime}+y=x^{2}+1 \Rightarrow y^{\prime}+\frac{1}{x} y=\frac{x^{2}+1}{x} \quad \text { Divide both sides by } x
$$

First-Order Linear Differential Equations

The first-order linear differential equation has the form

$$
y^{\prime}+P(x) y=Q(x),
$$

where $P(x)$ and $Q(x)$ are continuous functions of x.
To solve the first-order linear differential equation, we do the following steps:
(1) Compute the integrating factor $\mu(x)=e^{\int P(x) d x}$.
(2) Find the general solution by using the formula:

$$
y(x)=\frac{1}{\mu(x)} \int \mu(x) Q(x) d x
$$

Example

Solve the differential equation $x \frac{d y}{d x}+y=x^{2}+1$.
Solution: Write the differential equation in the form $y^{\prime}+P(x) y=Q(x)$.

$$
x y^{\prime}+y=x^{2}+1 \Rightarrow y^{\prime}+\frac{1}{x} y=\frac{x^{2}+1}{x} \quad \text { Divide both sides by } x
$$

The integrating factor is $\mu(x)=e^{\int \frac{1}{x} d x}=e^{\ln |x|}=x \quad$ Remember: $\int \frac{1}{x} d x=\ln |x|+c$ and $e^{\ln f(x)}=f(x)$

$$
\text { The general solution : } \begin{aligned}
y(x)=\frac{1}{x} \int x\left(\frac{x^{2}+1}{x}\right) d x & =\frac{1}{x} \int\left(x^{2}+1\right) d x \\
\Rightarrow y(x) & =\frac{1}{x}\left(\frac{x^{3}}{3}+x\right)+c .
\end{aligned}
$$

First-Order Linear Differential Equations

Remember:

(1) Compute the integrating factor $\mu(x)=e^{\int P(x) d x}$.
(2) Find the general solution by using the formula:

$$
y(x)=\frac{1}{\mu(x)} \int \mu(x) Q(x) d x
$$

Example

Solve the differential equation $y^{\prime}-\frac{2}{x} y=x^{2} e^{x}$, with $y(1)=0$.

First-Order Linear Differential Equations

Remember:

(1) Compute the integrating factor $\mu(x)=e^{\int P(x) d x}$.
(2) Find the general solution by using the formula:

$$
y(x)=\frac{1}{\mu(x)} \int \mu(x) Q(x) d x
$$

Example

Solve the differential equation $y^{\prime}-\frac{2}{x} y=x^{2} e^{x}$, with $y(1)=0$.

Solution: (1) The general solution: The differential equation is in the form $y^{\prime}+P(x) y=Q(x)$ where $P(x)=-\frac{2}{x}$ and $Q(x)=x^{2} e^{x}$.

First-Order Linear Differential Equations

Remember:

(1) Compute the integrating factor $\mu(x)=e^{\int P(x) d x}$.
(2) Find the general solution by using the formula:

$$
y(x)=\frac{1}{\mu(x)} \int \mu(x) Q(x) d x
$$

Example

Solve the differential equation $y^{\prime}-\frac{2}{x} y=x^{2} e^{x}$, with $y(1)=0$.

Solution: (1) The general solution: The differential equation is in the form $y^{\prime}+P(x) y=Q(x)$ where $P(x)=-\frac{2}{x}$ and $Q(x)=x^{2} e^{x}$.
The integrating factor is $\mu(x)=e^{-2 \int \frac{1}{x} d x}=e^{-2 \ln |x|}=e^{\ln |x|^{-2}}=x^{-2} \quad$ Remember: $\ln x^{r}=r \ln x \quad$ and $e^{\ln f(x)}=f(x)$

First-Order Linear Differential Equations

Remember:
(1) Compute the integrating factor $\mu(x)=e^{\int P(x) d x}$.
(2) Find the general solution by using the formula:

$$
y(x)=\frac{1}{\mu(x)} \int \mu(x) Q(x) d x
$$

Example

Solve the differential equation $y^{\prime}-\frac{2}{x} y=x^{2} e^{x}$, with $y(1)=0$.

Solution: (1) The general solution: The differential equation is in the form $y^{\prime}+P(x) y=Q(x)$ where $P(x)=-\frac{2}{x}$ and $Q(x)=x^{2} e^{x}$.
The integrating factor is $\mu(x)=e^{-2 \int \frac{1}{x} d x}=e^{-2 \ln |x|}=e^{\ln |x|^{-2}}=x^{-2} \quad$ Remember: $\ln x^{r}=r \ln x \quad$ and $e^{\ln f(x)}=f(x)$

The general solution: $y(x)=x^{2} \int \frac{1}{x^{2}}\left(x^{2} e^{x}\right) d x$

$$
\begin{aligned}
& =x^{2} \int e^{x} d x \\
y(x) & =x^{2}\left(e^{x}+c\right)
\end{aligned}
$$

First-Order Linear Differential Equations

Remember:
(1) Compute the integrating factor $\mu(x)=e^{\int P(x) d x}$.
(2) Find the general solution by using the formula:

$$
y(x)=\frac{1}{\mu(x)} \int \mu(x) Q(x) d x
$$

Example

Solve the differential equation $y^{\prime}-\frac{2}{x} y=x^{2} e^{x}$, with $y(1)=0$.

Solution: (1) The general solution: The differential equation is in the form $y^{\prime}+P(x) y=Q(x)$ where $P(x)=-\frac{2}{x}$ and $Q(x)=x^{2} e^{x}$.
The integrating factor is $\mu(x)=e^{-2 \int \frac{1}{x} d x}=e^{-2 \ln |x|}=e^{\ln |x|^{-2}}=x^{-2} \quad$ Remember: $\ln x^{r}=r \ln x \quad$ and $e^{\ln f(x)}=f(x)$

$$
\text { The general solution: } \begin{aligned}
y(x) & =x^{2} \int \frac{1}{x^{2}}\left(x^{2} e^{x}\right) d x \\
& =x^{2} \int e^{x} d x \\
y(x) & =x^{2}\left(e^{x}+c\right)
\end{aligned}
$$

(2) The particular solution:

$$
y(1)=0 \Rightarrow\left(1^{2}\right)\left(e^{1}+c\right)=0 \Rightarrow e+c=0 \Rightarrow c=-e
$$

The particular solution is $y(x)=x^{2}\left(e^{x}-e\right)$.

