
CS212:Data Structure

 Consider a situation when data elements are
inserted in a BST in sorted order: 1, 2, 3, …

 BST becomes a degenerate tree.

 Search operation FindKey takes O(n), which is
as inefficient as in a list.

2

1

2

3

 It is possible that after a number of insert and
delete operations a binary tree may become
imbalanced and increase in height.

 Can we insert and delete elements from BST
so that its height is guaranteed to be O(logn)?
◦ Yes, AVL Tree ensures this.

 Named after its two inventors: Adelson-
Velski and Landis.

3

4

70

60

90

30

20

110

80

70

60

90 30 10

20

110

An Imbalanced Tree A Balanced Tree

 We cannot always guarantee perfectly
balanced trees, since this depends on the
currently inserted nodes.

 But some nodes arrangements make a tree
more balanced than other nodes
arrangements.

5

6

70

60

30 10

20

Balanced Tree?

70

60

90 10

20

110

Balanced Tree?

7

60

10

20

Balanced Tree?

70

60

90 110

Balanced Tree?

8

60

10

20

Balanced Tree?

70

60

65 110

Balanced Tree?

60

20

10 110

70

65

60

 Height: the longest path from a node to a leaf
node.

 Height-balanced tree: A binary tree is a height-
balanced-p-tree if for each node in the tree, the
absolute difference in height of its two subtrees
is at most p.

 AVL tree is a BST that is height-balanced-1-tree.
◦ For each node in the tree, the absolute difference in height of its two

subtrees must be at most 1.

◦ Balance = Right Subtree Height – Left Subtree Height

◦ Therefore, it must be either +1 (longer right), 0 (equal), -1 (longer left).

9

10

70

60

30

20

AVL

70

60

20

AVL

0 0

0

0

0
+1

-1

11

70

60

30 10

20

AVL

70

60

90 10

20

110

AVL

0 0

0 0

0

0 0

0

-1

0

-1

12

60

20

AVL

70

60

10

20

AVL

0

-1

-1

0

-1

0

13

Not AVL

60

10

20

Not AVL

70

60

90

30

20

110

80

-2

0

-1

0

0

+1

+2

+3

-1

-2

14

70

80

90 10

20

110

AVL?
0

0 0 0

0 -1

15

70

80

90 10

20

110

AVL?

It is balanced tree
but not AVL

because it is not BST!

Remember:
AVL tree is a BST that is height-balanced-1-tree.

0

0 0 0

0 -1

16

1

2

3

4

5

Inserting 1, 2, 3, 4 and 5

2

3

4 1

5

BST after
insertions

AVL Tree
after insertions

0

0 0

0

+1

Elements: The elements are nodes, each node
contains the following data type: Type.

Structure: Same as for the BST; in addition the
height difference of the two subtrees of any
node is at the most one.

Domain: the number of nodes in a AVL is
bounded; type AVLTree.

17

Operations:

1. Method FindKey (int tkey, boolean found).

2. Method Insert (int k, Type e, boolean inserted).

3. Method Remove_Key (int tkey, boolean deleted)

4. Method Update(Type e)

5. Method Traverse (Order ord)

6. Method DeleteSub ()

7. Method Retrieve (Type e)

8. Method Empty (boolean empty).

9. Method Full (boolean full)

18

public class AVLNode<T> {
 public int key
 public T data;
 public Balance bal; // Balance is enum (+1, 0, -1)
 public AVLNode<T> left, right;

 public AVLNode(int key, T data) {
 this.key = key;
 this.data = data;
 bal = Balance.Zero;
 left = right = null;
 }
 ...

 ...

}

19

 The implementation of: FindKey, Update data,
Traverse, Retrieve, Empty, Full, and any other
method that doesn’t change the tree are
exactly like the implementation of BST.

 The only difference in implementation is
when we change the nodes of the tree, i.e.
Insert/Remove from the tree.

20

 Step 1:
A node is first inserted into the tree as in a BST.

 Step 2:
Nodes in the search path are examined to see if
there is a pivot node. Three cases arise.

◦ search path is a unique path from the root to the
new node.

◦ pivot node is a node closest to the new node on
the search path, whose balance is either –1 or
+1.

21

 Case 1:
There is no pivot node in the search path. No
adjustment required.

 Case 2:
The pivot node exists and the subtree to
which the new node is added has smaller
height. No adjustment required.

 Case 3:
The pivot node exists and the subtree to
which the new node is added has the larger
height. Adjustment required.

22

23

30

20

10

0

0 0

Insert 40

24

30

20

10

40

0 0

Insert 40 0

25

30

20

10

40

+1

0

+1 0

Insert 40

26

Insert 55
30

50 20

0
-1

60

0

40 10

0

0 0

27

Insert 55
30

50 20

0
-1

60

0

40 10

0

0 0

55

28

Insert 55
30

50 20

+1
-1

60

-1

40 10

+1

0 0

55

0

29

Insert 5 +1
20

30 10

+1
0

40

0

30

Insert 5
20

30 10

+1
0

40

0

30

5

+1

31

Insert 5
20

30 10

+1
-1

40

0

30

5

0

0

32

Insert 45 +1

70

30

50 20

+1
-1

60

+1

40 10

0 0

0

33

Insert 45 +1

70

30

50 20

+1
-1

60

+1

40 10

0 0

0

45

34

Insert 45

45

0

+1

70

30

50 20

0
-1

60

+1

40 10

0 +1

0

35

Insert 5 -1

10

60

80 40

+1
-1

100

0

50 20

0

30

0 0

0

36

Insert 5 -1

10

60

80 40

+1
-1

100

0

50 20

0

30

0 0

0

5

37

Insert 5

AVL Tree is no
more an AVL Tree
after insertion.

-2

10

60

80 40

+1
-2

100

0

50 20

-1

30

-1 0

0

5

 When after an insertion or a deletion an AVL
tree becomes imbalanced, adjustments
must be made to the tree to change it back
into an AVL tree.

 These adjustments are called rotations.
 Rotations can be in the left or right

direction.
 Rotations are either single or double

rotations.

38

 Therefore, there are four different
rotations:
◦ Left Rotation (Single)
◦ Right Rotation (Single)
◦ Left-Right Rotations (Double)
◦ Right-Left Rotations (Double)

39

40

B

A

T3

T1

New Node

T2

Pivot

Left Rotation (Single)

Remainder of
the tree

41

Left Rotation (Single)

A

B

T3

T1

New Node T2

Remainder of
the tree

42

Remainder of
the tree

Left Rotation (Single)
Insert 60

40

20

50 30

10

0 0

0

+1

43

Remainder of
the tree

Left Rotation (Single)

40

20

50 30

10

60

0 0

0

+1

Left Rotation (Single)
Insert 60

44

Remainder of
the tree

Left Rotation (Single)

50

40

60 30

20

0 0

+1

0

Left Rotation (Single)
Insert 60

10

0

0

45

Remainder of
the tree

A

B

T3

T1

New Node

T2

Pivot

Right Rotation (Single)

46

Remainder of
the tree

Right Rotation (Single)

B

A

T3

T1

New Node T2

Right Rotation (Single)
Insert 30

47

Remainder of
the tree

80

100

70 90

110

0 0

0

+1

0

Right Rotation (Single)
Insert 30

48

Remainder of
the tree

80

100

70 90

110

30

0 0

0

+1

0

Right Rotation (Single)
Insert 30

49

Remainder of
the tree

70

80

30 90

100

0 0

-1

0

110

0

0

50

Remainder of
the tree

A

C

T4

T1

Right-Left Rotation (Double)

B

T2 T3

1

2

51

Remainder of
the tree

B

C

T4

T1

Right-Left Rotation (Double)

A

T2

T3

2

52

Remainder of
the tree

A

B

T4 T1

Right-Left Rotation (Double)

T2 T3

C

53

Remainder of
the tree

Right-Left Rotation (Double)
Insert 70

100

90

80

60

0

0

-1

40

0

0

54

Remainder of
the tree

Right-Left Rotation (Double)
Insert 70

1

2

100

90

80

60

0

0

-1

40

0

0

70

55

Remainder of
the tree

Right-Left Rotation (Double)
Insert 70 2

100

90

80

0

-2

60

0

-2

70 40
0 0

56

Remainder of
the tree

Right-Left Rotation (Double)
Insert 70

90

80

+1

0

60

0

70 40
0 100

0
0

57

Remainder of
the tree

Left-Right Rotation (Double)

C

A

T4

T1
B

T2 T3

1

2

58

Remainder of
the tree

B

A

T4

T1

C

T2

T3

2
Left-Right Rotation (Double)

59

Remainder of
the tree

A

B

T1 T4
T3 T2

C

Left-Right Rotation (Double)

60

Remainder of
the tree

Left-Right Rotation (Double)
Insert 40

10

20

30

50

0

0

+1

100

0

0

1

2

61

Remainder of
the tree

Left-Right Rotation (Double)
Insert 40

10

20

30

50

0

0

+1

100

0

0

40

2

62

Remainder of
the tree

Left-Right Rotation (Double)
Insert 40

10

20

30

0

+2

50

0

+2

40 100
0 0

63

Remainder of
the tree

Left-Right Rotation (Double)
Insert 40

20

30

-1

0

50

0

40 100
0 10

0

 Step 1:
Delete the node as in BSTs. Remember there
are three cases for BST deletion.

 Step 2:
For each node on the path from the root to
deleted node, check if the node has become
imbalanced; if yes perform rotation
operations otherwise update balance factors
and exit. Three cases can arise for each node
p, in the path.

64

 Case 1:
Node p has balance factor 0. No adjustment
required.

 Case 2:
Node p has balance factor of +1 or –1 and a
node was deleted from the taller sub-trees. No
adjustment required.

 Case 3:
Node p has balance factor of +1 or –1 and a
node was deleted from the shorter sub-trees.
Adjustment required.

65

66

Delete 60
30

50 20

0
-1

60

0

40 10

0

0 0

67

Delete 60
30

50 20

0
-1

60

0

40 10

0

0 0

Delete
BST (Case 1)
AVL (Case 1)

68

Delete 60
30

50 20

0
-1

40 10

0

0 0

69

Delete 60
30

50 20

-1
-1

40 10

0

0 0

70

Delete 50
30

50 20

0
-1

60

0

40 10

0

0 0

71

Delete 50
30

50 20

0
-1

60

0

40 10

0

0 0

Delete
BST (Case 3)

72

Delete 50
30

50 20

0
-1

60

0

40 10

0

0 0

min in right subtree

73

Delete 50
30

60 20

0
-1

60

0

40 10

0

0 0

Delete duplicate
BST (Case 1)

74

Delete 50
30

60 20

0
-1

40 10

0

0 0

AVL (Case 1)

75

Delete 50
30

60 20

-1
-1

40 10

0 0

0

76

Delete 70
30

50 20

+1
-1

60

+1

40 10

+1

0 0

70

0

77

Delete 70
30

50 20

+1
-1

60

+1

40 10

+1

0 0

70

0

Delete
BST (Case 1)

78

Delete 70
30

50 20

+1
-1

60

+1

40 10

+1

0 0

AVL (Case 2)

79

Delete 70
30

50 20

0
-1

60

0

40 10

0

0 0

80

Delete 50
30

50 20

+1
-1

60

+1

40 10

+1

0 0

70

0

Delete
BST (Case 2)

81

Delete 50
30

50 20

+1
-1

60

+1

40 10

+1

0 0

70

0

min in right subtree

82

Delete 50
30

60 20

+1
-1

60

+1

40 10

+1

0 0

70

0

Delete duplicate
BST (Case 2)

83

Delete 50
30

60 20

+1
-1

60

+1

40 10

+1

0 0

70

0

Delete duplicate
BST (Case 2)

84

Delete 50
30

60 20

+1
-1

70

0

40 10

+1

0 0

AVL (Case 2)

85

Delete 50
30

60 20

0
-1

70

0

40 10

0

0 0

86

Delete 40
30

50 20

+1
-1

60

+1

40 10

+1

0 0

70

0

87

Delete 40
30

50 20

+1
-1

60

+1

40 10

+1

0 0

70

0
Delete
BST (Case 1)

88

Delete 40
30

50 20

-1

60

+1

10

+1

0

+2

70

0

Not balanced anymore

 Like insertion, when the tree become
unbalanced after deletion, rotation
need to be done.

 Like before, there are four cases:
◦ Left Rotation (Single)
◦ Right Rotation (Single)
◦ Left-Right Rotations (Double)
◦ Right-Left Rotations (Double)

 Rotation need to be done at every
unbalanced nodes in the search path.

89

90

Delete 40
30

50 20

-1

60

+1

10

+1

0

+2

70

0

Left Rotation (Single)

91

Delete 40
30

60 20

0
-1

70

0

50 10

0

0 0

No need for further rotations

92

Delete 40
30

60 20

0
-1

70

0

50 10

0

0 0

93

p

m

n j c

e

s

h d b

a g

f

i

k
u

o
r

t l

+1

-1

-1

0

0

-1

-1

-1

0
0 0

-1

+1

+1

+1

0

+1

0
-1

0

Delete p
BST (Case 3)

IMPORTANT: we decided to use max in left subtree when deleting
in this example (instead of min in right subtree).

94

p

m

n j c

e

s

h d b

a g

f

i

k
u

o
r

t l

+1

-1

-1

0

0

-1

-1

-1

0
0 0

-1

+1

+1

+1

0

+1

0
-1

0

Delete p

max in left subtree

IMPORTANT: we decided to use max in left subtree when deleting
in this example (instead of min in right subtree).

95

o

m

n j c

e

s

h d b

a g

f

i

k
u

o
r

t l

+1

-1

-1

0

0

-1

-1

-1

0
0 0

-1

+1

+1

+1

0

+1

0
-1

0

Delete p

Delete duplicate
BST (Case 1)

IMPORTANT: we decided to use max in left subtree when deleting
in this example (instead of min in right subtree).

96

o

m

n j c

e

s

h d b

a g

f

i

k
u r

t l

+1

-1

-1

0

0

-1

-1

-1

0
0 0

-1

+1

+2

0

+1

0
-1

0

Delete p

Now check (case 3)

97

o

m

n j c

e

s

h d b

a g

f

i

k
u r

t l

+1

-1

-1

0

0

-1

-1

-1

0
0 0

-1

+1

0

+1

0
-1

0

+2

Delete p

Now check (case 3)
Left Rotation (Single)

98

-2

s

m

o j c

e

u

h d b

a g

f

i

k r t n

l

+1

-1

-1

0

0

-1

-1

-1

0
0 0

+1

0

0

-1

0

0 0
Now check again (case 3)

99

-2

s

m

o j c

e

u

h d b

a g

f

i

k r t n

l

+1

-1

-1

0

0

-1

-1

-1

0
0 0

+1

0

0

-1

0

0 0
Now check again (case 3)
Right-Left Rotation (Double)

10
0

-2

s

m

o k c

j

u

h d b

a g

f

i

i r t n

-2

-1

-1

0

0

+1

-1

-1

0
0 0

0

0

0

-1

0

0 0
Now check again (case 3)
Right-Left Rotation (Double)

e

0

10
1

0

m

j

k h c

e

s

g d b

a f

i l o u

0

-1

-1

0

0

-1

-1

0

0

+1

+1

0

0

0

0
r n t

0

0

-1

10
2

0

m

j

k h c

e

s

g d b

a f

i l o u

0

-1

-1

0

0

-1

-1

0

0

+1

+1

0

0

0

0
r n t

0

0

-1

10
3

Single Rotation

h-1

h-1 h

Remainder of
the tree

C

B

T1

T3

Deleted Node

T2

p

+1

+1

Remainder of
the tree

B

C

T1

T3

T2

0

0

h

h-1 h-1

10
4

Single Rotation

h-1

h h

Remainder of
the tree

C

B

T1

T3

Deleted Node

T2

p

0

+1

Remainder of
the tree

B

C

T1

T3

T2

-1

+1

h

h h-1

10
5

Double Rotation

Deleted
Node

Remainder of
the tree

A

B

T1

T4

p

C

T3 T2

h-1

h-2 h-1

h-1

-1

-1

+1

h-1

Remainder of
the tree

A

C

T1 T4

B

T3 T
2

h-2 h-1 h-1

0

0 +1

10
6

Double Rotation

Deleted
Node

Remainder of
the tree

A

B

T1

T4

p

C

T3 T2

h-1

h-1 h-2

h-1

-1

-1

+1

h-1

Remainder of
the tree

A

C

T1 T4

B

T3 T
2

h-1 h-2 h-1

-1

-1 0

 Sub-Case 5: mirror image of Sub-Case 1.

 Sub-Case 6: mirror image of Sub-Case 2.

 Sub-Case 7: mirror image of Sub-Case 3.

 Sub-Case 8: mirror image of Sub-Case 4.

10
7

