AVL Trees

CS212:Data Structure




AVL Trees

» Consider a situation when data elements are
inserted in a BST in sorted order: 1, 2, 3, ...

» BST becomes a degenerate tree.

» Search operation FindKey takes O(n), which is
as inefficient as in a list.




AVL Trees

» It is possible that after a number of insert and
delete operations a binary tree may become
imbalanced and increase in height.

» Can we insert and delete elements from BST
so that its height is guaranteed to be O(logn)?
- Yes, AVL Tree ensures this.

» Named after its two inventors: Adelson-
Velski and Landis.




Imbalanced/Balanced Trees

An Imbalanced Tree A Balanced Tree

o
p—



AVL Tree: Definition

» We cannot always guarantee perfectly
balanced trees, since this depends on the
currently inserted nodes.

» But some nodes arrangements make a tree
more balanced than other nodes

arrangements.




Imbalanced/Balanced Trees

Balanced Tree? Balanced Tree?

p—




Imbalanced/Balanced Trees

Balanced Tree? Balanced Tree?

p—



Imbalanced/Balanced Trees

Balanced Tree? Balanced Tree?
8

o
<



AVL Tree: Definition

» Height: the longest path from a node to a leaf
node.

» Height-balanced tree: A binary tree is a height-
balanced-p-tree if for each node in the tree, the
absolute difference in height of its two subtrees
IS at most p.

» AVL tree is a BST that is height-balanced-1-tree.

- For each node in the tree, the absolute difference in height of its two
subtrees must be at most 1.

- Balance = Right Subtree Height - Left Subtree Height
- Therefore, it must be either +1 (longer right), 0 (equal), -1 (longer left).




AVL Trees




AVL Trees

11



AVL Trees




AVL Trees

N20t AVL

+1

Not AVL
+2

13



AVL Trees




AVL Trees

It is balanced tree
but not AVL
because it is not BST!

Remember:

AVL tree is a BST that is height-balanced-1-tree.

15



BSTs vs. AVL Trees
Inserting 1, 2, 3, 4 and 5

I\

(’ o‘ 0
0 Ii 0
AVL Tree

AN
BST after *
insertions ‘ after insertions

p—



ADT AVL Tree: Specification

Elements: The elements are nodes, each node
contains the following data type: Type.

Structure: Same as for the BST; in addition the
height difference of the two subtrees of any
node is at the most one.

Domain: the number of nodes in a AVL is
bounded; type AVLTree.

17



ADT AVL Tree: Specification

Operations:

Method FindKey (int tkey, boolean found).
Method Insert (int k, Type e, boolean inserted).
Method Remove_Key (int tkey, boolean deleted)
Method Update(Type e)

Method Traverse (Order ord)

Method DeleteSub ()

Method Retrieve (Type e)

Method Empty (boolean empty).

Method Full (boolean full)

1.
2.
3.
4.
5.
6.
7.
8.
0.

18



ADT AVL Tree: Element

public class AVLNode<T> {
public int key
public T data;
public Balance bal; // Balance is enum (+1, 0, —1)
public AVLNode<T> left, right;

public AVINode (int key, T data) {
this. key = key;
this. data = data;
bal = Balance. Zero;
left = right = null;

19



ADT AVL Tree: Implementation

» The implementation of: FindKey, Update data,
Traverse, Retrieve, Empty, Full, and any other
method that doesn’t change the tree are
exactly like the implementation of BST.

» The only difference in implementation is
when we change the nodes of the tree, i.e.
Insert/Remove from the tree.

20



AVL Tree: Insert

» Step 1:
A node is first inserted into the tree as in a BST.
» Step 2:
Nodes in the search path are examined to see if
there is a pivot node. Three cases arise.

- search path is a unique path from the root to the
new node.

> pivot node is a node closest to the new node on

the search path, whose balance is either -1 or
+1.

21



AVL Tree: Insert

» Case

1:

There is no pivot node in the search path. No
adjustment required.

» Case 2:

The
whic
heig

nivot node exists and the subtree to
n the new node is added has smaller

nt. No adjustment required.

» Case 3:
The
whic
heig

nivot node exists and the subtree to
n the new node is added has the larger
nt. Adjustment required.

22



AVL Tree: Insert (Case 1)

0 Insert 40
0 0

p—



AVL Tree: Insert (Case 1)

0 Insert 40
0 0

.
“\

‘S

\\.@

p—



AVL Tree: Insert (Case 1)

+1

Insert 40




AVL Tree: Insert (Case 1)

o -
. OA

p—



AVL Tree: Insert (Case 1)

. -
. OA

@

p—




AVL Tree: Insert (Case 1)

/'\ nsert 55
OA

° o0

p—



AVL Tree: Insert (Case 2)

/'\H Insert 5
0 +1

w °.

p—



AVL Tree: Insert (Case 2)

/‘\H Insert 5
0 +1

I.

’

/

/

v

’

v

’

’

/
:‘

p—



AVL Tree: Insert (Case 2)

/‘\O Insert 5
- +1

o

p—




AVL Tree: Insert (Case 2)

/'\ nsert 45
OA

et

p—



AVL Tree: Insert (Case 2)

/'\] Insert 45
0/ I )\

*%

6
p—




AVL Tree: Insert (Case 2)

o
.. 6.0

%
p—




AVL Tree: Insert (Case 3)

/'\] Insert 5
ﬁ i 0

p—




AVL Tree: Insert (Case 3)

-1 Insert 5
_]/'\ +1
0*0 * 0
.0 &
W
O

.



AVL Tree: Insert (Case 3)

i&;ﬂ
I
o
5

.

Insert 5

AVL Tree is no
more an AVL Tree
after insertion.



AVL Tree: Insert (Case 3)

» When after an insertion or a deletion an AVL
tree becomes imbalanced, adjustments
must be made to the tree to change it back
Into an AVL tree.

» These adjustments are called rotations.

» Rotations can be in the left or right
direction.

» Rotations are either single or double
rotations.

38



AVL Tree: Insert (Case 3)

» Therefore, there are four different
rotations:

- Left Rotation (Single)

> Right Rotation (Single)

- Left-Right Rotations (Double)

> Right-Left Rotations (Double)

39



AVL Tree: Insert (Case 3)

- Left Rotation (Single)

Pivot

Q New Node

p—

40



AVL Tree: Insert (Case 3)

- Left Rotation (Single)

Q New Node

p—

41



AVL Tree: Insert (Case 3)

- Left Rotation (Single)

i Insert 60
L +1

p—

42



AVL Tree: Insert (Case 3)

- Left Rotation (Single)

n] Insert 60

43



AVL Tree: Insert (Case 3)

- Left Rotation (Single)

0

Insert 60

44



AVL Tree: Insert (Case 3)

- Right Rotation (Single)

§ Pivot
New Node Q

p—

45



AVL Tree: Insert (Case 3)

- Right Rotation (Single)

New Node Q

p—

46



AVL Tree: Insert (Case 3)

- Right Rotation (Single)

Insert 30

47



AVL Tree: Insert (Case 3)

- Right Rotation (Single)

n Insert 30

48



AVL Tree: Insert (Case 3)

- Right Rotation (Single)

Insert 30

49



AVL Tree: Insert (Case 3)

- Right-Left Rotation (Double)

1

. O



AVL Tree: Insert (Case 3)

- Right-Left Rotation (Double)




AVL Tree: Insert (Case 3)

- Right-Left Rotation (Double)




AVL Tree: Insert (Case 3)

- Right-Left Rotation (Double)

-

Insert 70

53



AVL Tree: Insert (Case 3)

2 Insert 70

- Right-Left Rotation (Double)

54



AVL Tree: Insert (Case 3)

- Right-Left Rotation (Double)

HZ Insert 70

55



AVL Tree: Insert (Case 3)

- Right-Left Rotation (Double)

i Insert 70
0

56



AVL Tree: Insert (Case 3)

- Left-Right Rotation (Double)

1

. OO



AVL Tree: Insert (Case 3)

2. Left-Right Rotation (Double)

)

@5A



AVL Tree: Insert (Case 3)

- Left-Right Rotation (Double)




AVL Tree: Insert (Case 3)

- Left-Right Rotation (Double)

Insert 40

+l

60



AVL Tree: Insert (Case 3)

- Left-Right Rotation (Double)

2{\ Insert 40
1

0
59
O

61



AVL Tree: Insert (Case 3)

- Left-Right Rotation (Double)

2,{\ Insert 40

62



AVL Tree: Insert (Case 3)

- Left-Right Rotation (Double)

Insert 40

63



AVL Tree: Delete

» Step 1:
Delete the node as
are three cases for

» Step 2:
For each node on t
deleted node, chec
imbalanced; if yes

in BSTs. Remember there
BST deletion.

ne path from the root to
< if the node has become
verform rotation

operations otherwise update balance factors
and exit. Three cases can arise for each node
p, in the path.

64



AVL Tree: Delete

» Case 1:
Node p has balance factor 0. No adjustment
required.

» Case 2:
Node p has balance factor of +1 or -1 and a
node was deleted from the taller sub-trees. No
adjustment required.

» Case 3:
Node p has balance factor of +1 or -1 and a
node was deleted from the shorter sub-trees.
Adjustment required.

65



AVL Tree: Delete (Case 1)

A Delete 60
‘ O/*

p—



AVL Tree: Delete (Case 1)

0 Delete 60
_'| O
5 x5 U
® ® @
BST (Case 1)

AVL (Case 1)

p—



AVL Tree: Delete (Case 1)

/'\O Delete 60
_'| O

@ @

oW
p—




AVL Tree: Delete (Case 1)

/'\O Delete 60
_'| _]

@ @

oW
p—




AVL Tree: Delete (Case 1)

A Delete 50
‘ O/*

p—



AVL Tree: Delete (Case 1)

/'\ Delete 50
O/* BST (c e 3)

p—



AVL Tree: Delete (Case 1)

O Delete 50

& right subtree

p—



AVL Tree: Delete (Case 1)

0 Delete 50
-1 O
5 x5 U
‘ ‘ Delete duplicate
BST (Case 1)

p—



AVL Tree: Delete (Case 1)

0 Delete 50
_'| O
RO

AVL (Case 1)

p—



AVL Tree: Delete (Case 1)

/'\O Delete 50
_'| _]

g N

oW
p—




AVL Tree: Delete (Case 2)

A Delete 70
‘ O/*

p—



AVL Tree: Delete (Case 2)

/'\] Delete 70
‘ O/* +1

BST (Case 1)

p—



AVL Tree: Delete (Case 2)

/'\H Delete 70
i O/* +1

AVL (Case 2)

p—



AVL Tree: Delete (Case 2)

A Delete 70
‘ O/*

p—



AVL Tree: Delete (Case 2)

/'\] Delete 50
BST (C e?2)
‘ ‘.

p—



AVL Tree: Delete (Case 2)

Delete 50

&

p—



AVL Tree: Delete (Case 2)

Delete 50

+]
Delete duplicate
BST (C e?2)

p—



AVL Tree: Delete (Case 2)

/'\H Delete 50
+1

-1
®

Delete duplicate
BST (Case 2)

p—

83



AVL Tree: Delete (Case 2)

/'\] Delete 50

0 /*
‘ ‘ AVL (Case 2)

w
p—




AVL Tree: Delete (Case 2)

A Delete 50
‘ O/*

p—



AVL Tree: Delete (Case 3)

.-
. OA

p—



AVL Tree: Delete (Case 3)

/'\H Delete 40
(‘

BST (C el)

p—

o




AVL Tree: Delete (Case 3)

/'\H Delete 40
- 42

0 ‘ ‘\ o
Q Not balanced anymore

p—

88



AVL Tree: Delete (Case 3)

» Like insertion, when the tree become
unbalanced after deletion, rotation
need to be done.

» Like before, there are four cases:

o

o

o

_eft Rotation (Single)
Right Rotation (Single)
_eft-Right Rotations (Double)

Right-Left Rotations (Double)

» Rotation need to be done at every

unbalanced nodes in the search path.

89



AVL Tree: Delete (Case 3)

+1 Delete 40
_'| 2

@ @
Left Rotation (Single)
0]

"
p—

90



AVL Tree: Delete (Case 3)

/'\O Delete 40
‘ O/*

p—

No need for further rotations



AVL Tree: Delete (Case 3)

.-
.. OA

p—



AVL Tree: Delete (Case 3)

IMPORTANT: we decided to use max in left subtree when deleting
in this example (instead of min in right subtree).

Delete p
BST (Case 3)

+1

+1

93



AVL Tree: Delete (Case 3)

IMPORTANT: we decided to use max in left subtree when deleting
in this example (instead of min in right subtree).

Delete p

0

94



AVL Tree: Delete (Case 3)

IMPORTANT: we decided to use max in left subtree when deleting
in this example (instead of min in right subtree).

Delete p

Delete duplicate
BST (Case 1)

95



AVL Tree: Delete (Case 3)




AVL Tree: Delete (Case 3)

\
A

Now check (case 3) O
Left Rotatio (S ngle)




AVL Tree: Delete (Case 3)




AVL Tree: Delete (Case 3)

Now check again (case 3)
Right-Left Rotation (Double)

99



AVL Tree: Delete (Case 3)

Now check again (case 3)
Right-Left Rotation (Double)



AVL Tree: Delete (Case 3)




AVL Tree: Delete (Case 3)




AVL Tree: Delete (Case 3: Sub-Case 1)

-

Single Rotation

t A/h 1 h " ‘ Y
Deleted Node

10
3

0
0

-

h-



AVL Tree: Delete (Case 3: Sub-Case 2)

+1 Single Rotation

A%

Deleted Node

p—




AVL Tree: Delete (Case 3: Sub-Case 3)

Double Rotation

.

N

Delete
Node




AVL Tree: Delete (Case 3: Sub-Case 4)

Double Rotation

N

Delete
Node




AVL Tree: Delete (Case 3: Other Sub-Cases)

» Sub-Case 5: mirror image of Sub-Case 1.
» Sub-Case 6: mirror image of Sub-Case 2.
» Sub-Case 7: mirror image of Sub-Case 3.
» Sub-Case 8: mirror image of Sub-Case 4.




