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 Consider a situation when data elements are 
inserted in a BST in sorted order: 1, 2, 3, … 
 
 
 
 

 

 BST becomes a degenerate tree. 

 Search operation FindKey takes O(n), which is 
as inefficient as in a list. 
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 It is possible that after a number of insert and 
delete operations a binary tree may become 
imbalanced and increase in height. 

 Can we insert and delete elements from BST 
so that its height is guaranteed to be O(logn)? 
◦ Yes, AVL Tree ensures this. 

 Named after its two inventors: Adelson-
Velski and Landis. 
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 We cannot always guarantee perfectly 
balanced trees, since this depends on the 
currently inserted nodes. 

 But some nodes arrangements make a tree 
more balanced than other nodes 
arrangements. 
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 Height: the longest path from a node to a leaf  
node. 

 Height-balanced tree: A binary tree is a height-
balanced-p-tree if for each node in the tree, the 
absolute difference in height of its two subtrees 
is at most p. 

 

 AVL tree is a BST that is height-balanced-1-tree. 
◦ For each node in the tree, the absolute difference in height of its two 

subtrees must be at most 1. 

◦ Balance  =  Right Subtree Height  –  Left Subtree Height 

◦ Therefore, it must be either +1 (longer right), 0 (equal), -1 (longer left). 
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Elements: The elements are nodes, each node 
contains the following data type: Type. 

  

Structure: Same as for the BST; in addition the 
height difference of the two subtrees of any 
node is at the most one. 

 

Domain: the number of nodes in a AVL is 
bounded; type AVLTree. 
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Operations:  

1. Method FindKey (int tkey, boolean found).  

2. Method Insert (int k, Type e, boolean inserted). 

3. Method Remove_Key (int tkey, boolean deleted) 

4. Method Update(Type e) 

5. Method Traverse (Order ord) 

6. Method DeleteSub ( ) 

7. Method Retrieve (Type e) 

8. Method Empty (boolean empty). 

9. Method Full (boolean full) 
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public class AVLNode<T> { 
 public int key 
 public T data; 
 public Balance bal; // Balance is enum (+1, 0, -1) 
 public AVLNode<T> left, right; 
  
 public AVLNode(int key, T data) { 
  this.key = key; 
  this.data = data; 
  bal = Balance.Zero; 
  left = right = null; 
 } 
 ... 

 ... 

} 
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 The implementation of: FindKey, Update data, 
Traverse, Retrieve, Empty, Full, and any other 
method that doesn’t change the tree are 
exactly like the implementation of BST. 

 The only difference in implementation is 
when we change the nodes of the tree, i.e. 
Insert/Remove from the tree. 
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 Step 1: 
A node is first inserted into the tree as in a BST. 

 Step 2: 
Nodes in the search path are examined to see if 
there is a pivot node. Three cases arise. 

◦ search path is a unique path from the root to the 
new node. 

◦ pivot node is a node closest to the new node on 
the search path, whose balance is either –1 or 
+1. 

21 



 Case 1: 
There is no pivot node in the search path. No 
adjustment required. 

 Case 2: 
The pivot node exists and the subtree to 
which the new node is added has smaller 
height. No adjustment required. 

 Case 3: 
The pivot node exists and the subtree to 
which the new node is added has the larger 
height. Adjustment required. 
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 When after an insertion or a deletion an AVL 
tree becomes imbalanced, adjustments 
must be made to the tree to change it back 
into an AVL tree. 

 These adjustments are called rotations. 
 Rotations can be in the left or right 

direction. 
 Rotations are either single or double 

rotations. 
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 Therefore, there are four different 
rotations: 
◦ Left Rotation (Single) 
◦ Right Rotation (Single) 
◦ Left-Right Rotations (Double) 
◦ Right-Left Rotations (Double) 
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 Step 1: 
Delete the node as in BSTs. Remember there 
are three cases for BST deletion. 

 Step 2: 
For each node on the path from the root to 
deleted node, check  if the node has become 
imbalanced; if yes perform rotation 
operations otherwise update balance factors 
and exit. Three cases can arise for each node 
p, in the path. 
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 Case 1: 
Node p has balance factor 0. No adjustment 
required. 

 Case 2: 
Node p has balance factor of +1 or –1 and a 
node was deleted from the taller sub-trees. No 
adjustment required. 

 Case 3: 
Node p has balance factor of +1 or –1 and a 
node was deleted from the shorter sub-trees. 
Adjustment required. 
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 Like insertion, when the tree become 
unbalanced after deletion, rotation 
need to be done. 

 Like before, there are four cases: 
◦ Left Rotation (Single) 
◦ Right Rotation (Single) 
◦ Left-Right Rotations (Double) 
◦ Right-Left Rotations (Double) 

 Rotation need to be done at every 
unbalanced nodes in the search path. 

89 



90 

Delete 40 
30 

50 20 

-1 

60 

+1 

10 

+1 

0 

+2 

70 

0 

Left Rotation (Single) 



91 

Delete 40 
30 

60 20 

0 
-1 

70 

0 

50 10 

0 

0 0 

No need for further rotations 



92 

Delete 40 
30 

60 20 

0 
-1 

70 

0 

50 10 

0 

0 0 



93 

p 

m 

n j c 

e 

s 

h d b 

a g 

f 

i 

k 
u 

o 
r 

t l 

+1 

-1 

-1 

0 

0 

-1 

-1 

-1 

0 
0 0 

-1 

+1 

+1 

+1 

0 

+1 

0 
-1 

0 

Delete p 
BST (Case 3) 

IMPORTANT: we decided to use max in left subtree when deleting 
in this example (instead of min in right subtree). 



94 

p 

m 

n j c 

e 

s 

h d b 

a g 

f 

i 

k 
u 

o 
r 

t l 

+1 

-1 

-1 

0 

0 

-1 

-1 

-1 

0 
0 0 

-1 

+1 

+1 

+1 

0 

+1 

0 
-1 

0 

Delete p 

max in left subtree 

IMPORTANT: we decided to use max in left subtree when deleting 
in this example (instead of min in right subtree). 



95 

o 

m 

n j c 

e 

s 

h d b 

a g 

f 

i 

k 
u 

o 
r 

t l 

+1 

-1 

-1 

0 

0 

-1 

-1 

-1 

0 
0 0 

-1 

+1 

+1 

+1 

0 

+1 

0 
-1 

0 

Delete p 

Delete duplicate 
BST (Case 1) 

IMPORTANT: we decided to use max in left subtree when deleting 
in this example (instead of min in right subtree). 



96 

o 

m 

n j c 

e 

s 

h d b 

a g 

f 

i 

k 
u r 

t l 

+1 

-1 

-1 

0 

0 

-1 

-1 

-1 

0 
0 0 

-1 

+1 

+2 

0 

+1 

0 
-1 

0 

Delete p 

Now check (case 3) 
 



97 

o 

m 

n j c 

e 

s 

h d b 

a g 

f 

i 

k 
u r 

t l 

+1 

-1 

-1 

0 

0 

-1 

-1 

-1 

0 
0 0 

-1 

+1 

0 

+1 

0 
-1 

0 

+2 

Delete p 

Now check (case 3) 
Left Rotation (Single) 



98 

-2 

s 

m 

o j c 

e 

u 

h d b 

a g 

f 

i 

k r t n 

l 

+1 

-1 

-1 

0 

0 

-1 

-1 

-1 

0 
0 0 

+1 

0 

0 

-1 

0 

0 0 
Now check again (case 3) 



99 

-2 

s 

m 

o j c 

e 

u 

h d b 

a g 

f 

i 

k r t n 

l 

+1 

-1 

-1 

0 

0 

-1 

-1 

-1 

0 
0 0 

+1 

0 

0 

-1 

0 

0 0 
Now check again (case 3) 
Right-Left Rotation (Double) 



10
0 

-2 

s 

m 

o k c 

j 

u 

h d b 

a g 

f 

i 

i r t n 

-2 

-1 

-1 

0 

0 

+1 

-1 

-1 

0 
0 0 

0 

0 

0 

-1 

0 

0 0 
Now check again (case 3) 
Right-Left Rotation (Double) 

e 

0 



10
1 

0 

m 

j 

k h c 

e 

s 

g d b 

a f 

i l o u 

0 

-1 

-1 

0 

0 

-1 

-1 

0 

0 

+1 

+1 

0 

0 

0 

0 
r n t 

0 

0 

-1 



10
2 

0 

m 

j 

k h c 

e 

s 

g d b 

a f 

i l o u 

0 

-1 

-1 

0 

0 

-1 

-1 

0 

0 

+1 

+1 

0 

0 

0 

0 
r n t 

0 

0 

-1 



10
3 

Single Rotation 

h-1 

h-1 h 

Remainder of 
the tree 

C 

B 

T1 

T3 

Deleted Node  

T2 

p 

+1 

+1 

Remainder of 
the tree 

B 

C 

T1 

T3 

T2 

0 

0 

h 

h-1 h-1 



10
4 

Single Rotation 

h-1 

h h 

Remainder of 
the tree 

C 

B 

T1 

T3 

Deleted Node  

T2 

p 

0 

+1 

Remainder of 
the tree 

B 

C 

T1 

T3 

T2 

-1 

+1 

h 

h h-1 



10
5 

Double Rotation 

Deleted  
Node 

Remainder of 
the tree 

A 

B 

T1 

T4 

p 

C 

T3 T2 

h-1 

h-2 h-1 

h-1 

-1 

-1 

+1 

h-1 

Remainder of 
the tree 

A 

C 

T1 T4 

B 

T3 T
2 

h-2 h-1 h-1 

0 

0 +1 



10
6 

Double Rotation 

Deleted  
Node 

Remainder of 
the tree 

A 

B 

T1 

T4 

p 

C 

T3 T2 

h-1 

h-1 h-2 

h-1 

-1 

-1 

+1 

h-1 

Remainder of 
the tree 

A 

C 

T1 T4 

B 

T3 T
2 

h-1 h-2 h-1 

-1 

-1 0 



 Sub-Case 5: mirror image of Sub-Case 1. 

 Sub-Case 6: mirror image of Sub-Case 2. 

 Sub-Case 7: mirror image of Sub-Case 3. 

 Sub-Case 8: mirror image of Sub-Case 4. 
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