B-Trees
CSC212: Data Structures




B-Trees: Why?

» Best tree discussed so far - AVL Tree:
Important operation Findke) can be
implemented in O(logn) time.

» AVL Tree has problems for large data

- The size of the AVL tree increases and may not fit in
the system’s main memory.

- The height of the AVL tree also increases -
Findkey() operation no more efficient.




B-Trees: Why?

» To overcome these problems, m-way trees
have been created.

» M-way tree allows:
- Each node to have at the most m children (or sub-
trees)

- Each non-leaf node has (k-7) keys if it has k
children.

- M-way tree is ordered and could be balanced like
an AVL tree




M-Way Tree

M-way tree of order 4




B-Trees: Why?

» Because in a m-way tree, a node can have more
than two children and more than one data
element in it, the overall size (i.e. number of
nodes) decreases - height decreases.

» Also, at any time only a part of the tree can be
loaded into the main memory - the rest of the
tree can remain in disk storage.

» B-trees are a kind of m-way trees.
» Special types of B-trees:
- B+ Tree.
- B* Tree.
» Database files are represented as B-trees.




B+ Tree: Properties

» B+ Tree of order M has following properties:
- Root is either a leaf or has 2 to M children.

> Non-leaf nodes (except the root) have [M/2 | to M
children 2 which means they can have from
[M/21]-1 to M-1 keys stored in them.

- Non-leaf store at the most M-1 keys to guide
search; key i represents the smallest key in the
subtree i + 1.

- All leaves are at the same depth or level

- Data elements are stored in the leaves only and
have between [M/2] and M data elements.




B+ Tree: Properties

Notes:

1. Actually leaf nodes can have up to L data
elements. To simplify we assume L is equal to M.

2. Choice of parameters L and M depends on the
data being stored in the B+ Tree.




B+ Tree: Example 1

B+ tree of order 3 (M=3)




B+ Tree: Example 2

\4 Vi

B+ tree of order 4 (M=4)




B+ Tree: Search

- How is FindKey operation performed in a B+ Tree?
> Almost as in a BST

> The keys in the non-leaf node are used for
guidance.

> The data element is always in the leaves.

- Search path gets traced from the root to the leave,
where data element is found or not found.




B+ Tree: Insert

1. Search for a leaf node N into which new
data element D will be inserted.

2. Insert D in N in sorted order.
> If N has space for D, insert is complete.

> Otherwise, if there is no space in N “overflow”
takes place. Overflow is dealt with by:

Transferring a datum (or a subtree) to one of the
close sibling nodes.

Or, by splitting N, which may lead to other splits




B+ Tree: Insert

Insert 10

B+ tree of order 3 (M=3)




B+ Tree: Insert

Insert 4

B+ tree of order 3 (M=3)




B+ Tree: Insert

Insert 90

el

B+ tree of order 3 (M=3)




B+ Tree: Insert

Insert 8

B+ tree of order 3 (M=3)




B+ Tree: Insert

Insert 8 (Overflow)

B+ tree of order 3 (M=3)




B+ Tree: Insert

Insert 8 (Split)

=

B+ tree of order 3 (M=3)




B+ Tree: Insert

Insert 8 (Update)

B+ tree of order 3 (M=3)




B+ Tree: Insert

Insert 1

B+ tree of order 3 (M=3)




B+ Tree: Insert

Insert 6

B+ tree of order 3 (M=3)




B+ Tree: Insert

Insert 6 (Overflow)

B+ tree of order 3 (M=3)




B+ Tree: Insert

Insert 6 (Transfer)

B+ tree of order 3 (M=3)




B+ Tree: Insert

Insert 6 (Update)

B+ tree of order 3 (M=3)




B+ Tree: Insert

Insert 43

B+ tree of order 3 (M=3)




B+ Tree: Insert

Insert 43 (Overflow)

B+ tree of order 3 (M=3)




B+ Tree: Insert

Insert 43 (Split)

B+ tree of order 3 (M=3)




B+ Tree: Insert

Insert 43 (Update)

B+ tree of order 3 (M=3)




B+ Tree: Insert

Insert 3

B+ tree of order 3 (M=3)




B+ Tree: Insert

Insert 3 (Overflow)

B+ tree of order 3 (M=3)




B+ Tree: Insert

Insert 3 (Transfer)

B+ tree of order 3 (M=3)




B+ Tree: Insert

Insert 3 (Update)

B+ tree of order 3 (M=3)




B+ Tree: Insert

Insert 5

B+ tree of order 3 (M=3)




B+ Tree: Insert

Insert 5 (Overflow)

B+ tree of order 3 (M=3)




B+ Tree: Insert

Insert 5 (Split)

B+ tree of order 3 (M=3)




B+ Tree: Insert

Insert 5 (Update - Overflow)

B+ tree of order 3 (M=3)




B+ Tree: Insert

Insert 5 (Update - Overflow - Split)

B+ tree of order 3 (M=3)




B+ Tree: Insert

Insert 18

B+ tree of order 3 (M=3)




B+ Tree: Insert

Insert 18 (Overflow)

B+ tree of order 3 (M=3)




B+ Tree: Insert

Insert 18 (Transfer)

B+ tree of order 3 (M=3)




B+ Tree: Insert

Insert 18 (Update)

B+ tree of order 3 (M=3)




B+ Tree: Insert

Insert 20

B+ tree of order 3 (M=3)




B+ Tree: Insert

Insert 20 (Overflow)

B+ tree of order 3 (M=3)




B+ Tree: Insert
Insert 20 (Split)

B+ tree of order 3 (M=3)




B+ Tree: Insert
Insert 20 (Update)

B+ tree of order 3 (M=3)




B+ Tree: Insert

B+ tree of order 3 (M=3)




B+ Tree: Insert (Example 2)

Insert 18

B+ tree of order 3 (M=3)




B+ Tree: Insert (Example 2)

Insert 16

B+ tree of order 3 (M=3)




B+ Tree: Insert (Example 2)

Insert 16 (Overflow)

B+ tree of order 3 (M=3)




B+ Tree: Insert (Example 2)

Insert 16 (Transfer)

B+ tree of order 3 (M=3)




B+ Tree: Insert (Example 2)

Insert 16 (Update)

B+ tree of order 3 (M=3)




B+ Tree: Insert (Example 2)

Insert 1

B+ tree of order 3 (M=3)




B+ Tree: Insert (Example 2)

Insert 1 (Overflow)

B+ tree of order 3 (M=3)




B+ Tree: Insert (Example 2)

Insert 1 (Split)

I}

1

1

1
_




B+ Tree: Insert (Example 2)

Insert 1 (Update)

B+ tree of order 3 (M=3)




B+ Tree: Insert (Example 2)

Insert 12

B+ tree of order 3 (M=3)




B+ Tree: Insert (Example 2)

Insert 12

B+ tree of order 3 (M=3)




B+ Tree: Insert (Example 2)

Insert 19

B+ tree of order 3 (M=3)




B+ Tree: Insert (Example 2)

Insert 19 (Overflow)

B+ tree of order 3 (M=3)




B+ Tree: Insert (Example 2)

Insert 19 (Split)




B+ Tree: Insert (Example 2)

Insert 19 (Update - Overflow)

\
\
\
\
\
\
\
A
\
\
\
\-:

B+ tree of order 3 (M=3)




B+ Tree: Insert (Example 2)

Insert 19 (Update - Overflow - Split)

B+ tree of order 3 (M=3)




B+ Tree: Insert (Example 2)

Insert 51

B+ tree of order 3 (M=3)




B+ Tree: Insert (Example 2)

Insert 51

B+ tree of order 3 (M=3)




B+ Tree: Insert (Example 2)

Insert 28

B+ tree of order 3 (M=3)




B+ Tree: Insert (Example 2)

Insert 28 (Overflow)

B+ tree of order 3 (M=3)




B+ Tree: Insert (Example 2)

Insert 28 (Split)

B+ tree of order 3 (M=3)




B+ Tree: Insert (Example 2)

Insert 28 (Update - Overflow)

B+ tree of order 3 (M=3)




B+ Tree: Insert (Example 2)

Insert 28 (Update - Overflow - Transfer Child)

B+ tree of order 3 (M=3)




B+ Tree: Insert (Example 2)

Insert 28 (Update - Overflow - Transfer Child - Update)

B+ tree of order 3 (M=3)




B+ Tree: Insert (Example 2)

Insert 30

B+ tree of order 3 (M=3)




B+ Tree: Insert (Example 2)

Insert 30

B+ tree of order 3 (M=3)




B+ Tree: Insert (Example 2)

Insert 29

B+ tree of order 3 (M=3)




B+ Tree: Insert (Example 2)

Insert 29 (Overflow)

B+ tree of order 3 (M=3)




B+ Tree: Insert (Example 2)

Insert 29 (Split)




B+ Tree: Insert (Example 2)

Insert 29 (Update - Overflow)




B+ Tree: Insert (Example 2)

Insert 29 (Update - Overflow - Split)

B+ tree of order 3 (M=3)




B+ Tree: Insert (Example 2)

Insert 29 (Update - Overflow - Split Again)

B+ tree of order 3 (M=3)




B+ Tree: Insert (Example 2)

B+ tree of order 3 (M=3)




B+ Tree: Delete

1. Search for a leaf node N from which data
with key K is to be deleted.

2. Delete K from N.

> |f N has minimum number of data elements,
delete is complete.

- Otherwise, if there are fewer data elements
“‘underflow” takes place. Underflow is dealt with
by:

Borrowing a datum (or a subtree) from one of the
close sibling nodes.
Or, by merging N with one of its close siblings.

SRR
““



B+ Tree: Delete

Delete 51

B+ tree of order 3 (M=3)




B+ Tree: Delete

Delete 52

B+ tree of order 3 (M=3)




B+ Tree: Delete

Delete 52 (Underflow)

B+ tree of order 3 (M=3)




B+ Tree: Delete

Delete 52 (Borrow)

B+ tree of order 3 (M=3)




B+ Tree: Delete

Delete 52 (Update)

B+ tree of order 3 (M=3)




B+ Tree: Delete

Delete 58

B+ tree of order 3 (M=3)




B+ Tree: Delete

Delete 58 (Underflow)

B+ tree of order 3 (M=3)




B+ Tree: Delete

Delete 58 (Merge #1)

B+ tree of order 3 (M=3)




B+ Tree: Delete

Delete 58 (Update/Merge #2)

B+ tree of order 3 (M=3)




B+ Tree: Delete

Delete 58 (Update/Merge #3)

-

B+ tree of order 3 (M=3)




B+ Tree: Delete

Delete 58 (Update/Merge #3)

B+ tree of order 3 (M=3)




B+ Tree: Delete

Delete 17

B+ tree of order 3 (M=3)




B+ Tree: Delete

Delete 17 (Underflow)

B+ tree of order 3 (M=3)




B+ Tree: Delete

Delete 17 (Merge)

4
’
7’
4
4
4
7’
’
4
4
4
_

B+ tree of order 3 (M=3)




B+ Tree: Delete

Delete 17 (Borrow Child)

B+ tree of order 3 (M=3)




B+ Tree: Delete

Delete 17 (Update)

B+ tree of order 3 (M=3)




B+ Tree: Delete

Delete 15

B+ tree of order 3 (M=3)




B+ Tree: Delete

Delete 15 (Underflow)

B+ tree of order 3 (M=3)




B+ Tree: Delete

Delete 15 (Merge #1)

/"
’
’
L
2
-,
"
-’
’
L
_

B+ tree of order 3 (M=3)




B+ Tree: Delete

Delete 15 (Update/Merge #2)

B+ tree of order 3 (M=3)




B+ Tree: Delete

Delete 16

B+ tree of order 3 (M=3)




B+ Tree: Delete

Delete 16 (Normal)

B+ tree of order 3 (M=3)




B+ Tree: Delete

Delete 16 (Update)

B+ tree of order 3 (M=3)




B+ Tree: Delete

Delete 19

B+ tree of order 3 (M=3)




B+ Tree: Delete

Delete 19 (Underflow)

B+ tree of order 3 (M=3)




B+ Tree: Delete

Delete 19 (Borrow)

B+ tree of order 3 (M=3)




B+ Tree: Delete

Delete 19 (Update)

B+ tree of order 3 (M=3)




Reference

» Mark Allen Weiss, Data Structures & Problem
Solving Using C++, Pages: 707-715. (Covers
B+ trees in some detail)




B+ Tree: Homework

Delete 41
Delete 1
Delete 23

B+ tree of order 3 (M=3)




B+ Tree: Homework

Delete 41

B+ tree of order 3 (M=3)




B+ Tree: Homework

Delete 1

B+ tree of order 3 (M=3)




B+ Tree: Homework

Delete 1 (Underflow)

B+ tree of order 3 (M=3)




B+ Tree: Homework

Delete 1 (Merge/Update)

B+ tree of order 3 (M=3)




B+ Tree: Homework

Delete 23

B+ tree of order 3 (M=3)




B+ Tree: Homework

Delete 23 (Underflow)

B+ tree of order 3 (M=3)




B+ Tree: Homework

Delete 23 (Borrow/Update)

B+ tree of order 3 (M=3)




B+ Tree: Homework

B+ tree of order 3 (M=3)




