Delta Network

- The <u>delta network</u> is one example of a multistage interconnection network that can be used as a switch fabric
- The delta network is an example of a banyan network
- In banyan networks, there is a <u>single path</u> from each input port to each output port
- A delta network looks like the following...

8 x 8 DELTA NETWORK

Self Routing

- Delta network has <u>self-routing property</u>
- The path for a cell to take to reach its destination can be determined directly from its <u>routing tag</u> (i.e., destination port id)
- Stage k of the MIN looks at bit k of the tag
- If bit k is 0, then send cell out upper port
- If bit k is 1, then send cell out lower port
- Works for every possible input port (really!)

3

- Up to now, all examples have worked wonderfully because each incoming cell was destined to a different output port
- What happens if <u>more than one cell destined</u> to same output port?
- Answer: output port contention
- Result: <u>cell loss</u> in a bufferless network
- Alternatives: buffering, deflection routing, recirculation, tandem banyans, ...

28

Path Contention

- It is also possible for two incoming cells that are destined to <u>different output ports</u> to require the <u>same internal link</u> in the switch
- Called path contention or internal blocking
- Again, the result in a bufferless switch fabric is <u>cell loss</u> (one cell wins, one loses)
- Path contention and output port contention can seriously degrade the achievable throughput of the switch

8 x 8 DELTA NETWORK

Cell on input port 0 destined for output port 2

8 x 8 DELTA NETWORK

Cell on input port 4 destined for output port 3

INTERNAL BLOCKING

Cell on input port 0 destined for output port 2 Cell on input port 4 destined for output port 3

Omega Network

- The <u>omega network</u> is another example of a banyan multistage interconnection network that can be used as a switch fabric
- The omega differs from the delta network in the pattern of interconnections between the stages
- The omega MIN uses the "perfect shuffle"

Perfect Shuffle

- The interconnections between stages are defined by the logical "rotate left" of the bits used in the port ids
- Example: 000 ---> 000 ---> 000
- Example: 001 ---> 010 ---> 100 ---> 001
- Example: 011 ---> 110 ---> 101 ---> 011
- Example: 111 ---> 111 ---> 111

8 x 8 OMEGA NETWORK

Self Routing

- Omega network has <u>self-routing property</u>
- The path for a cell to take to reach its destination can be determined directly from its <u>routing tag</u> (i.e., destination port id)
- Stage k of the MIN looks at bit k of the tag
- If bit k is 0, then send cell out upper port
- If bit k is 1, then send cell out lower port
- Works for every possible input port (really!)

- The omega network has the problems as the delta network with output port contention and path contention
- Again, the result in a bufferless switch fabric is <u>cell loss</u> (one cell wins, one loses)
- Path contention and output port contention <u>can seriously degrade the achievable</u> <u>throughput of the switch</u>

Path Contention

Path Contention

A Solution: Batcher Sorter

- One solution to the contention problem is to sort the cells into monotonically increasing order based on desired destination port
- Done using a bitonic sorter called a <u>Batcher</u>
- Places the M cells into gap-free increasing sequence on the first M input ports
- Eliminates duplicate destinations

Batcher-Banyan

