GENERAL MATHEMATICS 2

Dr. M. Alghamdi
Department of Mathematics

September 1, 2020

Chapter 1: CONIC SECTIONS

Main Contents

(1) Parabola
(2) Ellipse
(3) Hyperbola

Section 1: Parabola

Definition

A parabola is a set of all points in a plane that are equidistant from a fixed point F (called the focus) and a fixed line D (called the directrix) in the same plane.

Section 1: Parabola

(1) Parabolas with the Vertex at the Origin
(A) Vertical Parabolas

The equation of the vertical parabola with the vertex at the origin is $x^{2}= \pm 4 a y$, where $a>0$.
(A.1) The equation $x^{2}=4$ a y has the following properties:

- The vertex of the parabola is at the origin $V(0,0)$.
- The parabola opens upwards.
- The axis of symmetry of the parabola is y-axis.
- The focus of the parabola is $F(0, a)$.
- The directrix of the parabola is $D: y=-a$.

Section 1: Parabola

(A.2) The equation $x^{2}=-4$ a y has the following properties:

- The vertex of the parabola is at the origin $V(0,0)$.
- The parabola opens downwards.
- The axis of symmetry of the parabola is y-axis.
- The focus of the parabola is $F(0,-a)$.
- The directrix of the parabola is $D: y=a$.

Section 1: Parabola

(B) Horizontal Parabolas

The equation of the horizontal parabola with the vertex at the origin is $y^{2}= \pm 4 a x$, where $a>0$. (B.1) The equation $y^{2}=4 a \times$ has the following properties:

- The vertex of the parabola is at the origin $V(0,0)$.
- The parabola opens to the right.
- The axis of symmetry of the parabola is x-axis.
- The focus of the parabola is $F(a, 0)$.
- The directrix of the parabola is $D: x=-a$.

Section 1: Parabola

(B.2) The equation $y^{2}=-4 a x$ has the following properties:

- The vertex of the parabola is at the origin $V(0,0)$.
- The parabola opens to the left.
- The axis of symmetry of the parabola is x-axis.
- The focus of the parabola is $F(-a, 0)$.
- The directrix of the parabola is $D: x=a$.

Section 1: Parabola

Example

Find the focus and the directrix of the parabola $x^{2}=4 y$, and sketch its graph.

Section 1: Parabola

Example

Find the focus and the directrix of the parabola $x^{2}=4 y$, and sketch its graph.
Solution:
The equation $x^{2}=4 y$ takes the form $x^{2}=4 a y$

$$
\Rightarrow 4 a=4 \Rightarrow a=1
$$

Therefore, the parabola has the following properties:

- The vertex of the parabola is $V(0,0)$.
- The parabola opens upwards.
- The axis of symmetry of the parabola is y-axis.
- The focus of the parabola is $F(0,1)$.
- The directrix of the parabola is $D: y=-1$.

Section 1: Parabola

Example

Find the focus and the directrix of the parabola $y^{2}=-8 x$, and sketch its graph.

Section 1: Parabola

Example

Find the focus and the directrix of the parabola $y^{2}=-8 x$, and sketch its graph.
Solution:
The equation $y^{2}=-8 x$ takes the form $y^{2}=-4 a x$

$$
\Rightarrow 4 a=8 \Rightarrow a=2
$$

The parabola has the following properties:

- The vertex of the parabola is $V(0,0)$.
- The parabola opens to the left.
- The axis of symmetry of the parabola is x-axis.
- The focus of the parabola is $F(-2,0)$.
- The directrix of the parabola is $D: x=2$.

