# Integral Calculus 

Dr. M. Alghamdi<br>Department of Mathematics

January 2, 2019

## Chapter 2: The definite Integrals

Main Contents
(1) Summation notation.
(2) Riemann sum and area.
(3) Definite integrals.
(4) Main properties of definite integrals.
(5) The fundamental theorem of calculus.
(6) Numerical integration:
brown! 90 Trapezoidal rule,Simpson's rule.

## Summation Notation

## Definition

Let $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a set of numbers. The symbol $\sum_{k=1}^{n} a_{k}$ represents their sum:

$$
\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+\ldots+a_{n}
$$

## Summation Notation

## Definition

Let $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a set of numbers. The symbol $\sum_{k=1}^{n} a_{k}$ represents their sum:

$$
\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+\ldots+a_{n}
$$

## Example

Evaluate the sum.
(1) $\sum_{i=1}^{3} i^{3}$
(2) $\sum_{j=1}^{4}\left(j^{2}+1\right)$
(3) $\sum_{k=1}^{3}(k+1) k^{2}$

## Solution:

(1) $\sum_{i=1}^{3} i^{3}=1^{3}+2^{3}+3^{3}=1+8+27=36$.
(2) $\sum_{j=1}^{4}\left(j^{2}+1\right)=\left(1^{2}+1\right)+\left(2^{2}+1\right)+\left(3^{2}+1\right)+\left(4^{2}+1\right)=2+5+10+17=34$.
(3) $\sum_{k=1}^{3}(k+1) k^{2}=(1+1)(1)^{2}+(2+1)(2)^{2}+(3+1)(3)^{2}=2+12+36=50$.

## Solution:

(1) $\sum_{i=1}^{3} i^{3}=1^{3}+2^{3}+3^{3}=1+8+27=36$.
(2) $\sum_{j=1}^{4}\left(j^{2}+1\right)=\left(1^{2}+1\right)+\left(2^{2}+1\right)+\left(3^{2}+1\right)+\left(4^{2}+1\right)=2+5+10+17=34$.
(3) $\sum_{k=1}^{3}(k+1) k^{2}=(1+1)(1)^{2}+(2+1)(2)^{2}+(3+1)(3)^{2}=2+12+36=50$.

## Theorem

Let $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be sets of real numbers. If $n$ is any positive integer, then
(1) $\sum_{k=1}^{n} c=\underbrace{c+c+\ldots+c}_{n \text {-times }}=n c$ for any $c \in \mathbb{R}$.
(2) $\sum_{k=1}^{n}\left(a_{k} \pm b_{k}\right)=\sum_{k=1}^{n} a_{k} \pm \sum_{k=1}^{n} b_{k}$.
(3) $\sum_{k=1}^{n} c a_{k}=c \sum_{k=1}^{n} a_{k}$ for any $c \in \mathbb{R}$.

## Example

Evaluate the sum.
(1) $\sum_{k=1}^{10} 15$
(2) $\sum_{k=1}^{4}\left(k^{2}+2 k\right)$
(3) $\sum_{k=1}^{3} 3(k+1)$

## Example

Evaluate the sum.
(1) $\sum_{k=1}^{10} 15$
(2) $\sum_{k=1}^{4}\left(k^{2}+2 k\right)$
(3) $\sum_{k=1}^{3} 3(k+1)$

## Solution:

(1) $\sum_{k=1}^{10} 15=(10)(15)=150$.
(2) $\sum_{k=1}^{4}\left(k^{2}+2 k\right)=\sum_{k=1}^{4} k^{2}+2 \sum_{k=1}^{4} k=\left(1^{2}+2^{2}+3^{2}+4^{2}\right)+2(1+2+3+4)=30+20=50$.
(3) $\sum_{k=1}^{3} 3(k+1)=3 \sum_{k=1}^{3}(k+1)=3(2+3+4)=27$.

## Theorem

(1) $\sum_{k=1}^{n} k=1+2+3+\ldots+n=\frac{n(n+1)}{2}$
(2) $\sum_{k=1}^{n} k^{2}=1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$
(3) $\sum_{k=1}^{n} k^{3}=1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$

## Example

## Evaluate the sum.

(1) $\sum_{k=1}^{100} k$
(2) $\sum_{k=1}^{10} k^{2}$
(3) $\sum_{k=1}^{10} k^{3}$

## Theorem

(1) $\sum_{k=1}^{n} k=1+2+3+\ldots+n=\frac{n(n+1)}{2}$
(2) $\sum_{k=1}^{n} k^{2}=1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$
(3) $\sum_{k=1}^{n} k^{3}=1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$

## Example

## Evaluate the sum.

(1) $\sum_{k=1}^{100} k$
(2) $\sum_{k=1}^{10} k^{2}$
(3) $\sum_{k=1}^{10} k^{3}$

Solution:
(1) $\sum_{k=1}^{100} k=\frac{100(100+1)}{2}=5050$.
(2) $\sum_{k=1}^{10} k^{2}=\frac{10(11)(21)}{6}=385$.
(3) $\sum_{k=1}^{10} k^{3}=\left[\frac{10(11)}{2}\right]^{2}=3025$.

## Example

Express the sum in terms of $n$.
(1) $\sum_{k=1}^{n}(k+1)$
(2) $\sum_{k=1}^{n}\left(k^{2}-k-1\right)$

## Example

Express the sum in terms of $n$.
(1) $\sum_{k=1}^{n}(k+1)$
(2) $\sum_{k=1}^{n}\left(k^{2}-k-1\right)$

Solution:
(1) $\sum_{k=1}^{n}(k+1)=\sum_{k=1}^{n} k+\sum_{k=1}^{n} 1=\frac{n(n+1)}{2}+n=\frac{n(n+3)}{2}$.
(2) $\sum_{k=1}^{n}\left(k^{2}-k-1\right)=\sum_{k=1}^{n} k^{2}-\sum_{k=1}^{n} k-\sum_{k=1}^{n} 1=-\frac{n(n+1)(2 n+1)}{6}-\frac{n(n+1)}{2}-n=\frac{n\left(n^{2}-4\right)}{3}$.

## Riemann Sum and Area

## Definition

$A$ set $P=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right\}$ is called a partition of a closed interval $[a, b]$ if for any positive integer $n$,

$$
a=x_{0}<x_{1}<x_{2}<\ldots .<x_{n-1}<x_{n}=b
$$



A partition of the interval $[a, b]$.

## Riemann Sum and Area

## Definition

$A$ set $P=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right\}$ is called a partition of a closed interval $[a, b]$ if for any positive integer $n$,

$$
a=x_{0}<x_{1}<x_{2}<\ldots .<x_{n-1}<x_{n}=b .
$$



A partition of the interval $[a, b]$.

## Notes:

$\square$ The division of the interval $[a, b]$ by the partition $P$ generates $n$ subintervals: $\left[x_{0}, x_{1}\right],\left[x_{1}, x_{2}\right],\left[x_{2}, x_{3}\right], \ldots,\left[x_{n-1}, x_{n}\right]$.
$\square$ The length of each subinterval $\left[x_{k-1}, x_{k}\right]$ is $\Delta x_{k}=x_{k}-x_{k-1}$.
$\square$ The union of subintervals gives the whole interval $[a, b]$.

## Definition

The norm of the partition of $P$ is the largest length among $\Delta x_{1}, \Delta x_{2}, \Delta x_{3}, \ldots, \Delta x_{n}$ i.e.,

$$
\|P\|=\max \left\{\Delta x_{1}, \Delta x_{2}, \Delta x_{3}, \ldots, \Delta x_{n}\right\} .
$$

## Example

If $P=\{0,1.2,2.3,3.6,4\}$ is a partition of the interval $[0,4]$, find the norm of the partition $P$.

## Definition

The norm of the partition of $P$ is the largest length among $\Delta x_{1}, \Delta x_{2}, \Delta x_{3}, \ldots, \Delta x_{n}$ i.e.,

$$
\|P\|=\max \left\{\Delta x_{1}, \Delta x_{2}, \Delta x_{3}, \ldots, \Delta x_{n}\right\} .
$$

## Example

If $P=\{0,1.2,2.3,3.6,4\}$ is a partition of the interval $[0,4]$, find the norm of the partition $P$.

## Solution:

We need to find the subintervals and their lengths.

| Subinterval <br> $\left[x_{k-1}, x_{k}\right]$ | Length <br> $\Delta x_{k}$ |
| :---: | :---: |
| $[0,1.2]$ | $1.2-0=1.2$ |
| $[1.2,2.3]$ | $2.3-1.2=1.1$ |
| $[2.3,3.6]$ | $3.6-2.3=1.3$ |
| $[3.6,4]$ | $4-3.6=0.4$ |

The norm of $P$ is the largest length among

$$
\left\{\Delta x_{1}, \Delta x_{2}, \Delta x_{3}, \Delta x_{4}\right\} .
$$

Hence, $\|P\|=\Delta x_{3}=1.3$

## Remark

(1) The partition $P$ of the interval $[a, b]$ is regular if

$$
\Delta x_{0}=\Delta x_{1}=\Delta x_{2}=\ldots=\Delta x_{n}=\Delta x
$$

(2) For any positive integer $n$, if the partition $P$ is regular then

$$
\Delta x=\frac{b-a}{n} \text { and } x_{k}=x_{0}+k \Delta x
$$

Let $P$ be a regular partition of the interval $[a, b]$. Since $x_{0}=a$ and $x_{n}=b$, then

## Remark

(1) The partition $P$ of the interval $[a, b]$ is regular if

$$
\Delta x_{0}=\Delta x_{1}=\Delta x_{2}=\ldots=\Delta x_{n}=\Delta x
$$

(2) For any positive integer $n$, if the partition $P$ is regular then

$$
\Delta x=\frac{b-a}{n} \text { and } x_{k}=x_{0}+k \Delta x
$$

Let $P$ be a regular partition of the interval $[a, b]$. Since $x_{0}=a$ and $x_{n}=b$, then

$$
\begin{aligned}
& x_{1}=x_{0}+\Delta x \\
& x_{2}=x_{1}+\Delta x=\left(x_{0}+\Delta x\right)+\Delta x=x_{0}+2 \Delta x \\
& x_{3}=x_{2}+\Delta x=\left(x_{0}+2 \Delta x\right)+\Delta x=x_{0}+3 \Delta x
\end{aligned}
$$

By continuing doing so, we have $x_{k}=x_{0}+k \Delta x$.


A regular partition of the interval $[a, b]$.

## Example

Define a regular partition $P$ that divides the interval $[1,4]$ into 4 subintervals.

## Example

Define a regular partition $P$ that divides the interval $[1,4]$ into 4 subintervals.

## Solution:

Since $P$ is a regular partition of $[1,4]$ where $n=4$, then

## Example

Define a regular partition $P$ that divides the interval $[1,4]$ into 4 subintervals.

## Solution:

Since $P$ is a regular partition of $[1,4]$ where $n=4$, then

$$
\Delta x=\frac{4-1}{4}=\frac{3}{4} \text { and } x_{k}=1+k \frac{3}{4} .
$$

## Example

Define a regular partition $P$ that divides the interval $[1,4]$ into 4 subintervals.

## Solution:

Since $P$ is a regular partition of $[1,4]$ where $n=4$, then

$$
\Delta x=\frac{4-1}{4}=\frac{3}{4} \text { and } x_{k}=1+k \frac{3}{4}
$$

Therefore,

$$
\begin{aligned}
& x_{0}=1 \\
& x_{1}=1+\frac{3}{4}=\frac{7}{4} \\
& x_{2}=1+2\left(\frac{3}{4}\right)=\frac{5}{2}
\end{aligned}
$$

$$
x_{3}=1+3\left(\frac{3}{4}\right)=\frac{13}{4}
$$

## Example

Define a regular partition $P$ that divides the interval $[1,4]$ into 4 subintervals.

## Solution:

Since $P$ is a regular partition of $[1,4]$ where $n=4$, then

$$
\Delta x=\frac{4-1}{4}=\frac{3}{4} \text { and } x_{k}=1+k \frac{3}{4}
$$

Therefore,

$$
\begin{aligned}
& x_{0}=1 \\
& x_{1}=1+\frac{3}{4}=\frac{7}{4} \\
& x_{2}=1+2\left(\frac{3}{4}\right)=\frac{5}{2}
\end{aligned}
$$

$$
x_{3}=1+3\left(\frac{3}{4}\right)=\frac{13}{4}
$$

$$
x_{4}=1+4\left(\frac{3}{4}\right)=4
$$

The regular partition is $P=\left\{1, \frac{7}{4}, \frac{5}{2}, \frac{13}{4}, 4\right\}$.

## Example

Define a regular partition $P$ that divides the interval $[1,4]$ into 4 subintervals.

## Solution:

Since $P$ is a regular partition of $[1,4]$ where $n=4$, then

$$
\Delta x=\frac{4-1}{4}=\frac{3}{4} \quad \text { and } \quad x_{k}=1+k \frac{3}{4}
$$

Therefore,

$$
\begin{array}{ll}
x_{0}=1 & x_{3}=1+3\left(\frac{3}{4}\right)=\frac{13}{4} \\
x_{1}=1+\frac{3}{4}=\frac{7}{4} & x_{4}=1+4\left(\frac{3}{4}\right)=4
\end{array}
$$

$$
x_{2}=1+2^{4}\left(\frac{3}{4}\right)^{4}=\frac{5}{2}
$$

The regular partition is $P=\left\{1, \frac{7}{4}, \frac{5}{2}, \frac{13}{4}, 4\right\}$.

## Definition

Let $f$ be a function defined on a closed interval $[a, b]$ and let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a partition of $[a, b]$. Let $\omega=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right)$ is a mark on the partition $P$ where $\omega_{k} \in\left[x_{k-1}, x_{k}\right], k=1,2,3, \ldots, n$. Then, a Riemann sum of $f$ for $P$ is

$$
R_{p}=\sum_{k=1}^{n} f\left(\omega_{k}\right) \Delta x_{k}
$$

If $f$ is a defined and positive function on a closed interval $[a, b]$ and $P$ is a partition of that interval where $\omega=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right)$ is a mark on the partition $P$, then the Riemann sum estimates the area of the region under $f$ from $x=a$ to $x=b$.

$$
A=\lim _{\|P\| \rightarrow 0} R_{p}=\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} f\left(\omega_{k}\right) \Delta x_{k}
$$



## Example

Find a Riemann sum $R_{p}$ of the function $f(x)=2 x-1$ for the partition $P=\{-2,0,1,4,6\}$ of the interval $[-2,6]$ by choosing the mark,
(1) the left-hand endpoint,
(2) the right-hand endpoint,
(3) the midpoint.

## Example

Find a Riemann sum $R_{p}$ of the function $f(x)=2 x-1$ for the partition $P=\{-2,0,1,4,6\}$ of the interval $[-2,6]$ by choosing the mark,
(1) the left-hand endpoint,
(2) the right-hand endpoint,
(3) the midpoint.

## Solution:

1) Choose the left-hand endpoint of each subinterval.

| Subintervals | Length $\Delta x_{k}$ | $\omega_{k}$ | $f\left(\omega_{k}\right)$ | $f\left(\omega_{k}\right) \Delta x_{k}$ |
| :---: | :---: | :---: | :---: | :---: |
| $[-2,0]$ | $0-(-2)=2$ | -2 | -5 | -10 |
| $[0,1]$ | $1-0=1$ | 0 | -1 | -1 |
| $[1,4]$ | $4-1=3$ | 1 | 1 | 3 |
| $[4,6]$ | $6-4=2$ | 4 | 7 | 14 |
| $R_{p}=\sum_{k=1}^{4} f\left(\omega_{k}\right) \Delta x_{k}$ |  |  |  | 6 |

2) Choose the right-hand endpoint of each subinterval.

| Subintervals | Length $\Delta x_{k}$ | $\omega_{k}$ | $f\left(\omega_{k}\right)$ | $f\left(\omega_{k}\right) \Delta x_{k}$ |
| :---: | :---: | :---: | :---: | :---: |
| $[-2,0]$ | $0-(-2)=2$ | 0 | -1 | -2 |
| $[0,1]$ | $1-0=1$ | 1 | 1 | 1 |
| $[1,4]$ | $4-1=3$ | 4 | 7 | 21 |
| $[4,6]$ | $6-4=2$ | 6 | 11 | 22 |
| $R_{p}=\sum_{k=1}^{4} f\left(\omega_{k}\right) \Delta x_{k}$ |  |  |  | 42 |

${ }^{1}$ To find the midpoint of each subinterval $\left[x_{k-1}, x_{k}\right], \omega_{k}=\frac{x_{k-1}+x_{k}}{2}$.
2) Choose the right-hand endpoint of each subinterval.

| Subintervals | Length $\Delta x_{k}$ | $\omega_{k}$ | $f\left(\omega_{k}\right)$ | $f\left(\omega_{k}\right) \Delta x_{k}$ |
| :---: | :---: | :---: | :---: | :---: |
| $[-2,0]$ | $0-(-2)=2$ | 0 | -1 | -2 |
| $[0,1]$ | $1-0=1$ | 1 | 1 | 1 |
| $[1,4]$ | $4-1=3$ | 4 | 7 | 21 |
| $[4,6]$ | $6-4=2$ | 6 | 11 | 22 |
| $R_{p}=\sum_{k=1}^{4} f\left(\omega_{k}\right) \Delta x_{k}$ |  |  |  | 42 |

3) Choose the midpoint of each subinterval. ${ }^{1}$

| Subintervals | Length $\Delta x_{k}$ | $\omega_{k}$ | $f\left(\omega_{k}\right)$ | $f\left(\omega_{k}\right) \Delta x_{k}$ |
| :---: | :---: | :---: | :---: | :---: |
| $[-2,0]$ | $0-(-2)=2$ | -1 | -3 | -6 |
| $[0,1]$ | $1-0=1$ | 0.5 | 0 | 0 |
| $[1,4]$ | $4-1=3$ | 2.5 | 4 | 12 |
| $[4,6]$ | $6-4=2$ | 5 | 9 | 18 |
| $R_{p}=\sum_{k=1}^{4} f\left(\omega_{k}\right) \Delta x_{k}$ |  |  |  | 24 |

${ }^{1}$ To find the midpoint of each subinterval $\left[x_{k-1}, x_{k}\right], \omega_{k}=\frac{x_{k-1}+x_{k}}{2}$.

## Example

Let $A$ be the area under the graph of $f(x)=x+1$ from $x=1$ to $x=3$. Find the area $A$ by taking the limit of the Riemann sum such that the partition $P$ is regular and the mark $\omega$ is the right-hand endpoint of each subinterval.

## Example

Let $A$ be the area under the graph of $f(x)=x+1$ from $x=1$ to $x=3$. Find the area $A$ by taking the limit of the Riemann sum such that the partition $P$ is regular and the mark $\omega$ is the right-hand endpoint of each subinterval.

## Solution:

For a regular partition $P$, we have
(1) $\Delta x=\frac{b-a}{n}=\frac{3-1}{n}=\frac{2}{n}$, and
(2) $x_{k}=x_{0}+k \Delta x$ where $x_{0}=1$.

## Example

Let $A$ be the area under the graph of $f(x)=x+1$ from $x=1$ to $x=3$. Find the area $A$ by taking the limit of the Riemann sum such that the partition $P$ is regular and the mark $\omega$ is the right-hand endpoint of each subinterval.

## Solution:

For a regular partition $P$, we have
(1) $\Delta x=\frac{b-a}{n}=\frac{3-1}{n}=\frac{2}{n}$, and
(2) $x_{k}=x_{0}+k \Delta x$ where $x_{0}=1$.

Since the mark $\omega$ is the right endpoint of each subinterval, then $\omega_{k}=x_{k}=1+\frac{2 k}{n}$. Therefore,

$$
f\left(\omega_{k}\right)=\left(1+\frac{2 k}{n}\right)+1=\frac{2 k}{n}+2=\frac{2}{n}(n+k)
$$

## Example

Let $A$ be the area under the graph of $f(x)=x+1$ from $x=1$ to $x=3$. Find the area $A$ by taking the limit of the Riemann sum such that the partition $P$ is regular and the mark $\omega$ is the right-hand endpoint of each subinterval.

## Solution:

For a regular partition $P$, we have
(1) $\Delta x=\frac{b-a}{n}=\frac{3-1}{n}=\frac{2}{n}$, and
(2) $x_{k}=x_{0}+k \Delta x$ where $x_{0}=1$.

Since the mark $\omega$ is the right endpoint of each subinterval, then $\omega_{k}=x_{k}=1+\frac{2 k}{n}$. Therefore,

$$
f\left(\omega_{k}\right)=\left(1+\frac{2 k}{n}\right)+1=\frac{2 k}{n}+2=\frac{2}{n}(n+k)
$$

From the definition,

$$
\begin{aligned}
R_{p}=\sum_{k=1}^{n} f\left(\omega_{k}\right) \Delta x_{k} & =\frac{4}{n^{2}} \sum_{k=1}^{n}(n+k) \\
& =\frac{4}{n^{2}}\left[n^{2}+\frac{n(n+1)}{2}\right] \\
& =4+\frac{2(n+1)}{n}
\end{aligned}
$$

(1) $\sum_{k=1}^{n}(n+k)=\sum_{k=1}^{n} n+\sum_{k=1}^{n} k$
(2) $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$

Hence, $\lim _{R}=4+2=6$.

## Definition

Let $f$ be a defined function on a closed interval $[a, b]$ and let $P$ be a partition of $[a, b]$. The definite integral of $f$ on $[a, b]$ is

$$
\int_{a}^{b} f(x) d x=\lim _{\|P\| \rightarrow 0} \sum_{k} f\left(\omega_{k}\right) \Delta x_{k}
$$

if the limit exists. The numbers $a$ and $b$ are called the limits of the integration.

## Definition

Let $f$ be a defined function on a closed interval $[a, b]$ and let $P$ be a partition of $[a, b]$. The definite integral of $f$ on $[a, b]$ is

$$
\int_{a}^{b} f(x) d x=\lim _{\|P\| \rightarrow 0} \sum_{k} f\left(\omega_{k}\right) \Delta x_{k}
$$

if the limit exists. The numbers $a$ and $b$ are called the limits of the integration.

## Example

Evaluate the integral $\int_{2}^{4}(x+2) d x$

## Definition

Let $f$ be a defined function on a closed interval $[a, b]$ and let $P$ be a partition of $[a, b]$. The definite integral of $f$ on $[a, b]$ is

$$
\int_{a}^{b} f(x) d x=\lim _{\|P\| \rightarrow 0} \sum_{k} f\left(\omega_{k}\right) \Delta x_{k}
$$

if the limit exists. The numbers $a$ and $b$ are called the limits of the integration.

## Example

Evaluate the integral $\int_{2}^{4}(x+2) d x$.
Solution: Let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a regular partition of the interval [2, 4], then $\Delta x=\frac{4-2}{n}=\frac{2}{n}$ and $x_{k}=x_{0}+\Delta x$.

## Definition

Let $f$ be a defined function on a closed interval $[a, b]$ and let $P$ be a partition of $[a, b]$. The definite integral of $f$ on $[a, b]$ is

$$
\int_{a}^{b} f(x) d x=\lim _{\|P\| \rightarrow 0} \sum_{k} f\left(\omega_{k}\right) \Delta x_{k}
$$

if the limit exists. The numbers $a$ and $b$ are called the limits of the integration.

## Example

Evaluate the integral $\int_{2}^{4}(x+2) d x$.
Solution: Let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a regular partition of the interval $[2,4]$, then $\Delta x=\frac{4-2}{n}=\frac{2}{n}$ and $x_{k}=x_{0}+\Delta x$.
Let the mark $\omega$ be the right endpoint of each subinterval, so $\omega_{k}=x_{k}=2+\frac{2 k}{n}$ and then $f\left(\omega_{k}\right)=\frac{2}{n}(2 n+k)$.

## Definition

Let $f$ be a defined function on a closed interval $[a, b]$ and let $P$ be a partition of $[a, b]$. The definite integral of $f$ on $[a, b]$ is

$$
\int_{a}^{b} f(x) d x=\lim _{\|P\| \rightarrow 0} \sum_{k} f\left(\omega_{k}\right) \Delta x_{k}
$$

if the limit exists. The numbers $a$ and $b$ are called the limits of the integration.

## Example

Evaluate the integral $\int_{2}^{4}(x+2) d x$
Solution: Let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a regular partition of the interval $[2,4]$, then
$\Delta x=\frac{4-2}{n}=\frac{2}{n}$ and $x_{k}=x_{0}+\Delta x$.
Let the mark $\omega$ be the right endpoint of each subinterval, so $\omega_{k}=x_{k}=2+\frac{2 k}{n}$ and then $f\left(\omega_{k}\right)=\frac{2}{n}(2 n+k)$.
The Riemann sum of $f$ for $P$ is

$$
R_{p}=\sum_{k} f\left(\omega_{k}\right) \Delta x_{k}=\frac{4}{n^{2}} \sum_{k}(2 n+k)=\frac{4}{n^{2}}\left(2 n^{2}+\frac{n(n+1)}{2}\right)=8+\frac{2(n+1)}{n} .
$$

## Definition

Let $f$ be a defined function on a closed interval $[a, b]$ and let $P$ be a partition of $[a, b]$. The definite integral of $f$ on $[a, b]$ is

$$
\int_{a}^{b} f(x) d x=\lim _{\|P\| \rightarrow 0} \sum_{k} f\left(\omega_{k}\right) \Delta x_{k}
$$

if the limit exists. The numbers $a$ and $b$ are called the limits of the integration.

## Example

Evaluate the integral $\int_{2}^{4}(x+2) d x$
Solution: Let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a regular partition of the interval $[2,4]$, then $\Delta x=\frac{4-2}{n}=\frac{2}{n}$ and $x_{k}=x_{0}+\Delta x$.
Let the mark $\omega$ be the right endpoint of each subinterval, so $\omega_{k}=x_{k}=2+\frac{2 k}{n}$ and then $f\left(\omega_{k}\right)=\frac{2}{n}(2 n+k)$.
The Riemann sum of $f$ for $P$ is

$$
R_{p}=\sum_{k} f\left(\omega_{k}\right) \Delta x_{k}=\frac{4}{n^{2}} \sum_{k}(2 n+k)=\frac{4}{n^{2}}\left(2 n^{2}+\frac{n(n+1)}{2}\right)=8+\frac{2(n+1)}{n} .
$$

From the definition, $\int_{2}^{4}(x+2) d x=\lim _{n \rightarrow \infty} R_{p}=8+\lim _{n \rightarrow \infty} \frac{2 n(n+1)}{n^{2}}=8+2=10$.

## Properties of the Definite Integral

## Theorem

1) $\int_{a}^{b} c d x=c(b-a)$,
2) $\int_{a}^{a} f(x) d x=0$ if $f(a)$ exists.
3) Linearity of Definite Integrals:

- If $f$ and $g$ are integrable on $[a, b]$, then $f+g$ and $f-g$ are integrable on $[a, b]$ and

$$
\int_{a}^{b}(f(x) \pm g(x)) d x=\int_{a}^{b} f(x) \pm \int_{a}^{b} g(x) d x
$$

- If $f$ is integrable on $[a, b]$ and $k \in \mathbb{R}$, then $k f$ is integrable on $[a, b]$ and

$$
\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x
$$

## Theorem

4) Comparison of Definite Integrals:

- If $f$ and $g$ are integrable on $[a, b]$ and $f(x) \geq g(x)$ for all $x \in[a, b]$, then

$$
\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x
$$

- If $f$ is integrable on $[a, b]$ and $f(x) \geq 0$ for all $x \in[a, b]$, then

$$
\int_{a}^{b} f(x) d x \geq 0
$$

5) Additive Interval of Definite Integrals:

If $f$ is integrable on the intervals $[a, c]$ and $[c, b]$, then $f$ is integrable on $[a, b]$ and

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

6) Reversed Interval of Definite Integrals:

If $f$ is integrable on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x
$$

## Example

Evaluate the integral.
(1) $\int_{0}^{2} 3 d x$
(2) $\int_{2}^{2}\left(x^{2}+4\right) d x$

## Example

Evaluate the integral.
(1) $\int_{0}^{2} 3 d x$
(2) $\int_{2}^{2}\left(x^{2}+4\right) d x$

Solution:
(1) $\int_{0}^{2} 3 d x=3(2-0)=6$.
(2) $\int_{2}^{2}\left(x^{2}+4\right) d x=0$.

## Example

Evaluate the integral.
(1) $\int_{0}^{2} 3 d x$
(2) $\int_{2}^{2}\left(x^{2}+4\right) d x$

Solution:
(1) $\int_{0}^{2} 3 d x=3(2-0)=6$.
(2) $\int_{2}^{2}\left(x^{2}+4\right) d x=0$.

## Example

If $\int_{a}^{b} f(x) d x=4$ and $\int_{a}^{b} g(x) d x=2$, then find $\int_{a}^{b}\left(3 f(x)-\frac{g(x)}{2}\right) d x$.

## Example

Evaluate the integral.
(1) $\int_{0}^{2} 3 d x$
(2) $\int_{2}^{2}\left(x^{2}+4\right) d x$

Solution:
(1) $\int_{0}^{2} 3 d x=3(2-0)=6$.
(2) $\int_{2}^{2}\left(x^{2}+4\right) d x=0$.

## Example

If $\int_{a}^{b} f(x) d x=4$ and $\int_{a}^{b} g(x) d x=2$, then find $\int_{a}^{b}\left(3 f(x)-\frac{g(x)}{2}\right) d x$.
Solution:

$$
\int_{a}^{b}\left(3 f(x)-\frac{g(x)}{2}\right) d x=3 \int_{a}^{b} f(x) d x-\frac{1}{2} \int_{a}^{b} g(x) d x=3(4)-\frac{1}{2}(2)=11 .
$$

## Example

Prove that $\int_{0}^{2}\left(x^{3}+x^{2}+2\right) d x \geq \int_{0}^{2}\left(x^{2}+1\right) d x$ without evaluating the integrals.

## Example

Prove that $\int_{0}^{2}\left(x^{3}+x^{2}+2\right) d x \geq \int_{0}^{2}\left(x^{2}+1\right) d x$ without evaluating the integrals.
Solution: Let $f(x)=x^{3}+x^{2}+2$ and $g(x)=x^{2}+1$. We can find that $f(x)-g(x)=x^{3}+1>0$ for all $x \in[0,2]$. This implies that $f(x)>g(x)$.

## Example

Prove that $\int_{0}^{2}\left(x^{3}+x^{2}+2\right) d x \geq \int_{0}^{2}\left(x^{2}+1\right) d x$ without evaluating the integrals.
Solution: Let $f(x)=x^{3}+x^{2}+2$ and $g(x)=x^{2}+1$. We can find that $f(x)-g(x)=x^{3}+1>0$ for all $x \in[0,2]$. This implies that $f(x)>g(x)$.
From the theorem, we have

$$
\int_{0}^{2}\left(x^{3}+x^{2}+2\right) d x \geq \int_{0}^{2}\left(x^{2}+1\right) d x
$$

## The Fundamental Theorem of Calculus

## Theorem

Suppose that $f$ is continuous on the closed interval $[a, b]$.
(1) If $F(x)=\int_{a}^{x} f(t) d t$ for every $x \in[a, b]$, then $F(x)$ is an antiderivative of $f$ on $[a, b]$.
(2) If $F(x)$ is any antiderivative of $f$ on $[a, b]$, then $\int_{a}^{b} f(x) d x=F(b)-F(a)$.

## The Fundamental Theorem of Calculus

## Theorem

Suppose that $f$ is continuous on the closed interval $[a, b]$.
(1) If $F(x)=\int_{a}^{x} f(t) d t$ for every $x \in[a, b]$, then $F(x)$ is an antiderivative of $f$ on $[a, b]$.
(2) If $F(x)$ is any antiderivative of $f$ on $[a, b]$, then $\int_{a}^{b} f(x) d x=F(b)-F(a)$.

## Corollary

If $F$ is an antiderivative of $f$, then

$$
\int_{a}^{b} f(x) d x=[F(x)]_{a}^{b}=F(b)-F(a)
$$

## Notes:

$\square$ From the previous corollary, a definite integral $\int_{a}^{b} f(x) d x$ is evaluated by two steps:
Step 1: Find an antiderivative $F$ of the integrand, Step 2: Evaluate the antiderivative $F$ at upper and lower limits by substituting $x=b$ and $x=a$ (evaluate at lower limit) into $F$, then subtracting the latter from the former i.e., calculate $F(b)-F(a)$.

## Notes:

$\square$ From the previous corollary, a definite integral $\int_{a}^{b} f(x) d x$ is evaluated by two steps:
Step 1: Find an antiderivative $F$ of the integrand,
Step 2: Evaluate the antiderivative $F$ at upper and lower limits by substituting $x=b$ and $x=a$ (evaluate at lower limit) into $F$, then subtracting the latter from the former i.e., calculate $F(b)-F(a)$.
$\square$ When using substitution to evaluate the definite integral $\int_{a}^{b} f(x) d x$, we have two options:
Option 1: Change the limits of integration to the new variable. For example, $\int_{0}^{1} 2 x \sqrt{x^{2}+1} d x$. Let $u=x^{2}+1$, this implies $d u=2 x d x$. Change the limits $u(0)=1$ and $u(1)=2$. By substitution, we have $\int_{1}^{2} u^{1 / 2} d u$. Then, evaluate the integral without returning to the original variable.
Option 2: Leave the limits in terms of the original variable. Evaluate the integral, then return to the original variable. After that, substitute $x=b$ and $x=a$ into the antiderivative as in step 2 above.

## Example

Evaluate the integral.
(1) $\int_{-1}^{2}(2 x+1) d x$
(4) $\int_{0}^{\frac{\pi}{2}}(\sin x+1) d x$
(2) $\int_{0}^{3}\left(x^{2}+1\right) d x$
(5) $\int_{\frac{\pi}{4}}^{\pi}\left(\sec ^{2} x-4\right) d x$
(3) $\int_{1}^{2} \frac{1}{\sqrt{x^{3}}} d x$
(6) $\int_{0}^{\frac{\pi}{3}}(\sec x \tan x+x) d x$

## Example

Evaluate the integral.
(1) $\int_{-1}^{2}(2 x+1) d x$
(4) $\int_{0}^{\frac{\pi}{2}}(\sin x+1) d x$
(2) $\int_{0}^{3}\left(x^{2}+1\right) d x$
(5) $\int_{\frac{\pi}{4}}^{\pi}\left(\sec ^{2} x-4\right) d x$
(3) $\int_{1}^{2} \frac{1}{\sqrt{x^{3}}} d x$
(6) $\int_{0}^{\frac{\pi}{3}}(\sec x \tan x+x) d x$

## Solution:

1) $\int_{-1}^{2}(2 x+1) d x=\left[x^{2}+x\right]_{-1}^{2}=(4+2)-\left((-1)^{2}+(-1)\right)=6-0=6$.
2) $\int_{0}^{3}\left(x^{2}+1\right) d x=\left[\frac{x^{3}}{3}+x\right]_{0}^{3}=\left(\frac{27}{3}+3\right)-0=12$.
3) $\int_{1}^{2} \frac{1}{\sqrt{x^{3}}} d x=\left[\frac{-2}{\sqrt{x}}\right]_{1}^{2}=\frac{-2}{\sqrt{2}}-(-2)=\frac{-2+2 \sqrt{2}}{\sqrt{2}}=-\sqrt{2}+2$.
4) $\int_{0}^{\frac{\pi}{2}}(\sin x+1) d x=[-\cos x+x]_{0}^{\frac{\pi}{2}}=\left(-\cos \frac{\pi}{2}+\frac{\pi}{2}\right)-(-\cos 0+0)=\frac{\pi}{2}+1$.
5) $\int_{\frac{\pi}{4}}^{\pi}\left(\sec ^{2} x-4\right) d x=[\tan x-4 x]_{\frac{\pi}{4}}^{\pi}=(\tan \pi-4 \pi)-\left(\tan \frac{\pi}{4}-4 \frac{\pi}{4}\right)=$
$-4 \pi-(1-\pi)=-3 \pi-1$.
6) $\int_{0}^{\frac{\pi}{3}}(\sec x \tan x+x) d x=\left[\sec x+\frac{x^{2}}{2}\right]_{0}^{\frac{\pi}{3}}=\left(\sec \frac{\pi}{3}+\frac{\left(\frac{\pi}{3}\right)^{2}}{2}\right)-\left(\sec 0+\frac{0}{2}\right)=$ $2+\frac{\pi^{2}}{18}-1=1+\frac{\pi^{2}}{18}$.
7) $\int_{\frac{\pi}{4}}^{\pi}\left(\sec ^{2} x-4\right) d x=[\tan x-4 x]_{\frac{\pi}{4}}^{\pi}=(\tan \pi-4 \pi)-\left(\tan \frac{\pi}{4}-4 \frac{\pi}{4}\right)=$
$-4 \pi-(1-\pi)=-3 \pi-1$.
8) $\int_{0}^{\frac{\pi}{3}}(\sec x \tan x+x) d x=\left[\sec x+\frac{x^{2}}{2}\right]_{0}^{\frac{\pi}{3}}=\left(\sec \frac{\pi}{3}+\frac{\left(\frac{\pi}{3}\right)^{2}}{2}\right)-\left(\sec 0+\frac{0}{2}\right)=$ $2+\frac{\pi^{2}}{18}-1=1+\frac{\pi^{2}}{18}$.

## Example

If $f(x)=\left\{\begin{array}{ll}x^{2} & : x<0 \\ x^{3} & : x \geq 0\end{array}\right.$, find $\int_{-1}^{2} f(x) d x$.
5) $\int_{\frac{\pi}{4}}^{\pi}\left(\sec ^{2} x-4\right) d x=[\tan x-4 x]_{\frac{\pi}{4}}^{\pi}=(\tan \pi-4 \pi)-\left(\tan \frac{\pi}{4}-4 \frac{\pi}{4}\right)=$ $-4 \pi-(1-\pi)=-3 \pi-1$.
6) $\int_{0}^{\frac{\pi}{3}}(\sec x \tan x+x) d x=\left[\sec x+\frac{x^{2}}{2}\right]_{0}^{\frac{\pi}{3}}=\left(\sec \frac{\pi}{3}+\frac{\left(\frac{\pi}{3}\right)^{2}}{2}\right)-\left(\sec 0+\frac{0}{2}\right)=$ $2+\frac{\pi^{2}}{18}-1=1+\frac{\pi^{2}}{18}$.

## Example

If $f(x)=\left\{\begin{array}{ll}x^{2} & : x<0 \\ x^{3} & : x \geq 0\end{array}, \quad\right.$ find $\int_{-1}^{2} f(x) d x$.

## Solution:

The definition of the function $f$ changes at 0 . Since $[-1,2]=[-1,0] \cup[0,2]$, then from the theorem,

$$
\begin{aligned}
\int_{-1}^{2} f(x) d x & =\int_{-1}^{0} f(x) d x+\int_{0}^{2} f(x) d x \\
& =\int_{-1}^{0} x^{2} d x+\int_{0}^{2} x^{3} d x \\
& =\left[\frac{x^{3}}{3}\right]_{-1}^{0}+\left[\frac{x^{4}}{4}\right]_{0}^{2} \\
& =\frac{1}{3}+\frac{16}{4}=\frac{13}{3}
\end{aligned}
$$

## Example

Evaluate the integral $\int_{0}^{2}|x-1| d x$.

## Example

Evaluate the integral $\int_{0}^{2}|x-1| d x$.
Solution:

$$
|x-1|= \begin{cases}-(x-1) & : x<1 \\ x-1 & : x \geq 1\end{cases}
$$

## Example

Evaluate the integral $\int_{0}^{2}|x-1| d x$

## Solution:

$$
|x-1|= \begin{cases}-(x-1) & : x<1 \\ x-1 & : x \geq 1\end{cases}
$$

Since $[0,2]=[0,1] \cup[1,2]$, then from the theorem,

$$
\begin{aligned}
\int_{0}^{2}|x-1| d x & =\int_{0}^{1}(-x+1) d x+\int_{1}^{2}(x-1) d x \\
& =\left[\frac{-x^{2}}{2}+x\right]_{0}^{1}+\left[\frac{x^{2}}{2}-x\right]_{1}^{2} \\
& =\left(\frac{1}{2}-0\right)+\left(0+\frac{1}{2}\right)=1
\end{aligned}
$$

## Example

Evaluate the integral $\int_{0}^{2}|x-1| d x$

## Solution:

$$
|x-1|= \begin{cases}-(x-1) & : x<1 \\ x-1 & : x \geq 1\end{cases}
$$

Since $[0,2]=[0,1] \cup[1,2]$, then from the theorem,

$$
\begin{aligned}
\int_{0}^{2}|x-1| d x & =\int_{0}^{1}(-x+1) d x+\int_{1}^{2}(x-1) d x \\
& =\left[\frac{-x^{2}}{2}+x\right]_{0}^{1}+\left[\frac{x^{2}}{2}-x\right]_{1}^{2} \\
& =\left(\frac{1}{2}-0\right)+\left(0+\frac{1}{2}\right)=1
\end{aligned}
$$

## Mean Value Theorem for Integrals

## Theorem

If $f$ is continuous on a closed interval $[a, b]$, then there is at least a number $z \in(a, b)$ such that

$$
\int_{a}^{b} f(x) d x=f(z)(b-a)
$$

## Example

Find a number $z$ that satisfies the conclusion of the Mean Value Theorem for the function $f$ on the given interval.
(1) $f(x)=1+x^{2},[0,2]$
(2) $f(x)=\sqrt[3]{x},[0,1]$

## Example

Find a number $z$ that satisfies the conclusion of the Mean Value Theorem for the function $f$ on the given interval.
(1) $f(x)=1+x^{2},[0,2]$
(2) $f(x)=\sqrt[3]{x},[0,1]$

## Solution:

(1) From the theorem,

$$
\begin{aligned}
\int_{0}^{2}\left(1+x^{2}\right) d x & =(2-0) f(z) \\
{\left[x+\frac{x^{3}}{3}\right]_{0}^{2} } & =2\left(1+z^{2}\right) \\
\frac{14}{3} & =2\left(1+z^{2}\right) \\
\frac{7}{3} & =1+z^{2}
\end{aligned}
$$

This implies $z^{2}=\frac{4}{3}$, then $z= \pm \frac{2}{\sqrt{3}}$. However, $-\frac{2}{\sqrt{3}} \notin(0,2)$, so $z=\frac{2}{\sqrt{3}} \in(0,2)$.
(2) From the theorem,

$$
\begin{aligned}
\int_{0}^{1} \sqrt[3]{x} d x & =(1-0) f(z) \\
\frac{3}{4}\left[x^{\frac{4}{3}}\right]_{0}^{1} & =\sqrt[3]{z}
\end{aligned}
$$

This implies $z=\frac{27}{64} \in(0,1)$.
(2) From the theorem,

$$
\begin{aligned}
\int_{0}^{1} \sqrt[3]{x} d x & =(1-0) f(z) \\
\frac{3}{4}\left[x^{\frac{4}{3}}\right]_{0}^{1} & =\sqrt[3]{z}
\end{aligned}
$$

This implies $z=\frac{27}{64} \in(0,1)$.

## Definition

If $f$ is continuous on the interval $[a, b]$, then the average value $f_{a v}$ of $f$ on $[a, b]$ is

$$
f_{a v}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

(2) From the theorem,

$$
\begin{aligned}
\int_{0}^{1} \sqrt[3]{x} d x & =(1-0) f(z) \\
\frac{3}{4}\left[x^{\frac{4}{3}}\right]_{0}^{1} & =\sqrt[3]{z}
\end{aligned}
$$

This implies $z=\frac{27}{64} \in(0,1)$.

## Definition

If $f$ is continuous on the interval $[a, b]$, then the average value $f_{a v}$ of $f$ on $[a, b]$ is

$$
f_{a v}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

## Example

Find the average value of the function $f$ on the given interval.
(1) $f(x)=x^{3}+x-1,[0,2]$
(2) $f(x)=\sqrt{x},[1,3]$

## Solution:

(1) $f_{a v}=\frac{1}{2-0} \int_{0}^{2}\left(x^{3}+x-1\right) d x=\frac{1}{2}\left[\frac{x^{4}}{4}+\frac{x^{2}}{2}-x\right]_{0}^{2}=\frac{1}{2}[(4+2-2)-(0)]=2$.

## Solution:

(1) $f_{a v}=\frac{1}{2-0} \int_{0}^{2}\left(x^{3}+x-1\right) d x=\frac{1}{2}\left[\frac{x^{4}}{4}+\frac{x^{2}}{2}-x\right]_{0}^{2}=\frac{1}{2}[(4+2-2)-(0)]=2$.
(2) $f_{a v}=\frac{1}{3-1} \int_{1}^{3} \sqrt{x} d x=\frac{1}{2} \frac{2}{3}\left[x^{\frac{3}{2}}\right]_{1}^{3}=\frac{3 \sqrt{3}-1}{3}$.

## Solution:

(1) $f_{a v}=\frac{1}{2-0} \int_{0}^{2}\left(x^{3}+x-1\right) d x=\frac{1}{2}\left[\frac{x^{4}}{4}+\frac{x^{2}}{2}-x\right]_{0}^{2}=\frac{1}{2}[(4+2-2)-(0)]=2$.
(2) $f_{a v}=\frac{1}{3-1} \int_{1}^{3} \sqrt{x} d x=\frac{1}{2} \frac{2}{3}\left[x^{\frac{3}{2}}\right]_{1}^{3}=\frac{3 \sqrt{3}-1}{3}$.

From the Fundamental Theorem, if $f$ is continuous on $[a, b]$ and $F(x)=\int_{c}^{x} f(t) d t$ where $c \in[a, b]$, then

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=\frac{d}{d x}[F(x)-F(a)]=f(x) \quad \forall x \in[a, b] .
$$

This result can be generalized as follows:

## Theorem

Let $f$ be continuous on $[a, b]$. If $g$ and $h$ are in the domain of $f$ and differentiable, then

$$
\frac{d}{d x} \int_{g(x)}^{h(x)} f(t) d t=f(h(x)) h^{\prime}(x)-f(g(x)) g^{\prime}(x) \quad \forall x \in[a, b] .
$$

## Theorem

Let $f$ be continuous on $[a, b]$. If $g$ and $h$ are in the domain of $f$ and differentiable, then

$$
\frac{d}{d x} \int_{g(x)}^{h(x)} f(t) d t=f(h(x)) h^{\prime}(x)-f(g(x)) g^{\prime}(x) \quad \forall x \in[a, b] .
$$

## Corollary

Let $f$ be continuous on $[a, b]$. If $g$ and $h$ are in the domain of $f$ and differentiable, then
(1) $\frac{d}{d x} \int_{a}^{h(x)} f(t) d t=f(h(x)) h^{\prime}(x) \quad \forall x \in[a, b]$,
(2) $\frac{d}{d x} \int_{g(x)}^{a} f(t) d t=-f(g(x)) g^{\prime}(x) \quad \forall x \in[a, b]$.

## Example

Find the derivative.
(1) $\frac{d}{d x} \int_{1}^{x} \sqrt{\cos t} d t$
(5) $\frac{d}{d x} \int_{1}^{\sin x} \frac{1}{1-t^{2}} d t$
(2) $\frac{d}{d x} \int_{1}^{x^{2}} \frac{1}{t^{3}+1} d t$
(0) $\frac{d}{d x} \int_{-x}^{x} \cos \left(t^{2}+1\right) d t$
(3) $\frac{d}{d x}\left(x \int_{x}^{x^{2}}\left(t^{3}-1\right) d t\right)$
(3) $\frac{d}{d x} \int_{-x}^{x^{2}} \frac{1}{t^{2}+1} d t$
(9) $\frac{d}{d x} \int_{x+1}^{3} \sqrt{t+1} d t$
(8) $\frac{d}{d x} \int_{\cos x}^{\sin x} \sqrt{1+t^{4}} d t$

## Example

Find the derivative.
(1) $\frac{d}{d x} \int_{1}^{x} \sqrt{\cos t} d t$
(5) $\frac{d}{d x} \int_{1}^{\sin x} \frac{1}{1-t^{2}} d t$
(2) $\frac{d}{d x} \int_{1}^{x^{2}} \frac{1}{t^{3}+1} d t$
(6) $\frac{d}{d x} \int_{-x}^{x} \cos \left(t^{2}+1\right) d t$
(3) $\frac{d}{d x}\left(x \int_{x}^{x^{2}}\left(t^{3}-1\right) d t\right)$
(7) $\frac{d}{d x} \int_{-x}^{x^{2}} \frac{1}{t^{2}+1} d t$
(4) $\frac{d}{d x} \int_{x+1}^{3} \sqrt{t+1} d t$
(8) $\frac{d}{d x} \int_{\cos x}^{\sin x} \sqrt{1+t^{4}} d t$

## Solution:

1) $\frac{d}{d x} \int_{1}^{x} \sqrt{\cos t} d t=\sqrt{\cos x}(1)=\sqrt{\cos x}$.
2) $\frac{d}{d x} \int_{1}^{x^{2}} \frac{1}{t^{3}+1} d t=\frac{1}{\left(x^{2}\right)^{3}+1}(2 x)=\frac{2 x}{x^{6}+1}$.
3) $\frac{d}{d x}\left(x \int_{x}^{x^{2}}\left(t^{3}-1\right) d t\right)=\int_{x}^{x^{2}}\left(t^{3}-1\right) d t+x\left(2 x\left(x^{6}-1\right)-\left(x^{3}-1\right)\right)$
4) $\frac{d}{d x} \int_{x+1}^{3} \sqrt{t+1} d t=0-\sqrt{(x+1)+1}=-\sqrt{x+2}$.
5) $\frac{d}{d x} \int_{1}^{\sin x} \frac{1}{1-t^{2}} d t=\frac{1}{1-\sin ^{2} x} \cos x=\frac{\cos x}{\cos ^{2} x}=\sec x$.
6) $\frac{d}{d x} \int_{-x}^{x} \cos \left(t^{2}+1\right) d t=\cos \left(x^{2}+1\right)+\cos \left(x^{2}+1\right)=2 \cos \left(x^{2}+1\right)$.
7) $\frac{d}{d x} \int_{-x}^{x^{2}} \frac{1}{t^{2}+1} d t=\frac{2 x}{x^{4}+1}+\frac{1}{x^{2}+1}$.
8) $\frac{d}{d x} \int_{\cos x}^{\sin x} \sqrt{1+t^{4}} d t=\sqrt{1+\sin ^{4} x} \cos x+\sqrt{1+\cos ^{4} x} \sin x$.

## Example

If $F(x)=\left(x^{2}-2\right) \int_{2}^{x}\left(t+3 F^{\prime}(t)\right) d t$, find $F^{\prime}(2)$.

## Example

If $F(x)=\left(x^{2}-2\right) \int_{2}^{x}\left(t+3 F^{\prime}(t)\right) d t$, find $F^{\prime}(2)$.
Solution:

$$
F^{\prime}(x)=2 x \int_{2}^{x}\left(t+3 F^{\prime}(t)\right) d t+\left(x^{2}-2\right)\left(x+3 F^{\prime}(x)\right)
$$

Letting $x=2$ gives

$$
\begin{aligned}
& F^{\prime}(2)=4 \int_{2}^{2}\left(t+3 F^{\prime}(t)\right) d t+(4-2)\left(2+3 F^{\prime}(2)\right) \\
& \Rightarrow F^{\prime}(2)=2\left(2+3 F^{\prime}(2)\right) \text {. }
\end{aligned}
$$

Hence, $-5 F^{\prime}(2)=4 \Rightarrow F^{\prime}(2)=-\frac{4}{5}$.

## Numerical Integration

Assume $P$ is a regular partition of $[a, b]$. We divide the interval $[a, b]$ by the partition $P$ into $n$ subintervals: $\left[x_{0}, x_{1}\right],\left[x_{1}, x_{2}\right],\left[x_{2}, x_{3}\right], \ldots,\left[x_{n-1}, x_{n}\right]$. Then, we find the length of the subintervals: $\Delta x_{k}=\frac{b-a}{n}$. Using Riemann sum, we have

$$
\int_{a}^{b} f(x) d x \approx \sum_{k=1}^{n} f\left(\omega_{k}\right) \Delta x_{k}=\frac{b-a}{n} \sum_{k=1}^{n} f\left(\omega_{k}\right)
$$

where $\omega=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right)$ is a mark on the partition $P$.


Figure: Approximation of a definite integral by using the trapezoidal rule.

As shown in the figure, we take the mark as follows:
(1) The left-hand endpoint. We choose $\omega_{k}=x_{k-1}$ in each subinterval. Then,

$$
\int_{a}^{b} f(x) d x \approx \frac{b-a}{n} \sum_{k=1}^{n} f\left(x_{k-1}\right)
$$

(2) The right-hand endpoint. We choose $\omega_{k}=x_{k}$ in each subinterval. Then,

$$
\int_{a}^{b} f(x) d x \approx \frac{b-a}{n} \sum_{k=1}^{n} f\left(x_{k}\right)
$$

(3) The average of the previous two approximations is more accurate,

$$
\frac{b-a}{2 n}\left[\sum_{k=1}^{n} f\left(x_{k-1}\right)+\sum_{k=1}^{n} f\left(x_{k}\right)\right] .
$$

## Trapezoidal Rule

Let $f$ be continuous on $[a, b]$. If $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ is a regular partition of $[a, b]$, then

$$
\int_{a}^{b} f(x) d x \approx \frac{b-a}{2 n}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\ldots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
$$

## Error Estimation

## Theorem

Suppose that $f^{\prime \prime}$ is continuous on $[a, b]$ and $M$ is the maximum value for $f^{\prime \prime}$ over $[a, b]$. If $E_{T}$ is the error in calculating $\int_{a}^{b} f(x) d x$ under the trapezoidal rule, then

$$
\left|E_{T}\right| \leq \frac{M(b-a)^{3}}{12 n^{2}}
$$

## Example

By using the trapezoidal rule with $n=4$, approximate the integral $\int_{1}^{2} \frac{1}{x} d x$. Then, estimate the error.

## Solution:

1) We approximate the integral $\int_{1}^{2} \frac{1}{x} d x$ by the trapezoidal rule.
a) Find a regular partition $P=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right\}$ where $\Delta x=\frac{(b-a)}{n}$ and $x_{k}=x_{0}+k \Delta x$. We divide the interval $[1,2]$ into four subintervals where the length of each subinterval is $\Delta x=\frac{2-1}{4}=\frac{1}{4}$ as follows:
$x_{0}=1$
$x_{1}=1+\frac{1}{4}=1 \frac{1}{4}$

$$
\begin{aligned}
& x_{3}=1+3\left(\frac{1}{4}\right)=1 \frac{3}{4} \\
& x_{4}=1+4\left(\frac{1}{4}\right)=2
\end{aligned}
$$

$x_{2}=1+2\left(\frac{1}{4}\right)=1 \frac{1}{2}$

The partition is $P=\{1,1.25,1.5,1.75,2\}$.
b) Approximate the integral by using the following table:

| $k$ | $x_{k}$ | $f\left(x_{k}\right)$ | $m_{k}$ | $m_{k} f\left(x_{k}\right)$ |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 1 | 1 |
| 1 | 1.25 | 0.8 | 2 | 1.6 |
| 2 | 1.5 | 0.6667 | 2 | 1.3334 |
| 3 | 1.75 | 0.5714 | 2 | 1.1428 |
| 4 | 2 | 0.5 | 1 | 0.5 |
| Sum $=\sum_{k=1}^{4} m_{k} f\left(x_{k}\right)$ |  |  |  |  |

Hence,

$$
\int_{1}^{2} \frac{1}{x} d x \approx \frac{1}{8}[5.5762]=0.697
$$

b) Approximate the integral by using the following table:

| $k$ | $x_{k}$ | $f\left(x_{k}\right)$ | $m_{k}$ | $m_{k} f\left(x_{k}\right)$ |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 1 | 1 |
| 1 | 1.25 | 0.8 | 2 | 1.6 |
| 2 | 1.5 | 0.6667 | 2 | 1.3334 |
| 3 | 1.75 | 0.5714 | 2 | 1.1428 |
| 4 | 2 | 0.5 | 1 | 0.5 |
| Sum $=\sum_{k=1}^{4} m_{k} f\left(x_{k}\right)$ |  |  |  | 5.5762 |

Hence,

$$
\int_{1}^{2} \frac{1}{x} d x \approx \frac{1}{8}[5.5762]=0.697
$$

2) We estimate the error by using the theorem:

$$
f(x)=\frac{1}{x} \Rightarrow f^{\prime}(x)=\frac{-1}{x^{2}} \Rightarrow f^{\prime \prime}(x)=\frac{2}{x^{3}} \Rightarrow f^{\prime \prime \prime}(x)=-\frac{6}{x^{4}} .
$$

Since $f^{\prime \prime}(x)$ is a decreasing function on the interval $[1,2]$, then $f^{\prime \prime}(x)$ is maximized at $x=1$. Hence, $M=\left|f^{\prime \prime}(1)\right|=2$ and $\left|E_{T}\right| \leq \frac{2(2-1)^{3}}{12(4)^{2}}=\frac{1}{96}=0.0104$.

## Simpson's Rule

Figure: Approximation of a definite integral by using Simpson's rule.

First, let $P$ be a regular partition of the interval $[a, b]$ to generate $n$ subintervals such that $|P|=\frac{(b-a)}{n}$ and $n$ is an even number.

Take three points lying on the parabola as shown in the next figure. Assume for simplicity that $x_{0}=-h$, $x_{1}=0$ and $x_{2}=h$. Since the equation of a parabola is

$$
y=a x^{2}+b x+c
$$

, then from the figure, the area under the graph bounded by $[-h, h]$ is
$\int_{-h}^{h}\left(a x^{2}+b x+c\right) d x=\frac{h}{3}\left(2 a h^{2}+6 c\right)$.

figure
Thus, since the points $P_{0}, P_{1}$ and $P_{2}$ lie on the parabola, then

$$
\begin{aligned}
& y_{0}=a h^{2}-b h+c \\
& y_{1}=c \\
& y_{2}=a h^{2}+b h+c .
\end{aligned}
$$

Some computations lead to $2 a h^{2}+6 c=y_{0}+4 y_{1}+y_{2}$. Therefore,

$$
\int_{-h}^{h}\left(a x^{2}+b x+c\right) d x=\frac{h}{3}\left(y_{0}+4 y_{1}+y_{2}\right)=\frac{h}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right) .
$$

Generally, for any three points $P_{k-1}, P_{k}$ and $P_{k+1}$, we have

$$
\frac{h}{3}\left(y_{k-1}+4 y_{k}+y_{k+1}\right)=\frac{h}{3}\left(f\left(x_{k-1}\right)+4 f\left(x_{k}\right)+f\left(x_{k+1}\right)\right) .
$$

By summing the areas of all parabolas, we have

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =\frac{h}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right) \\
& +\frac{h}{3}\left(f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right) \\
& \cdots \\
& +\frac{h}{3}\left(f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right) \\
& =\frac{b-a}{3 n}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\ldots+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
\end{aligned}
$$

## Simpson's Rule

Let $f$ be continuous on $[a, b]$. If $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ is a regular partition of $[a, b]$ where $n$ is even, then

$$
\int_{a}^{b} f(x) d x \approx \frac{(b-a)}{3 n}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\ldots+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right] .
$$

## Error Estimation

The estimation of the error under Simpson's method is given by the following theorem.

## Theorem

Suppose $f^{(4)}$ is continuous on $[a, b]$ and $M$ is the maximum value for $f^{(4)}$ on $[a, b]$. If $E_{S}$ is the error in calculating $\int_{a}^{b} f(x) d x$ under Simpson's rule, then

$$
\left|E_{S}\right| \leq \frac{M(b-a)^{5}}{180 n^{4}}
$$

## Example

By using Simpson's rule with $n=4$, approximate the integral $\int_{1}^{3} \sqrt{x^{2}+1} d x$. Then, estimate the error.

## Solution:

1) We approximate the integral $\int_{1}^{3} \sqrt{x^{2}+1} d x$ under Simpson's rule.
a) Find the partition $P=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right\}$ where $\Delta x=\frac{(b-a)}{n}$ and $x_{k}=x_{0}+k \Delta x$.

We divide the interval $[1,3]$ into four subintervals where the length of each subinterval is $\Delta x=\frac{3-1}{4}=\frac{1}{2}$ as follows:
$\begin{array}{ll}x_{0}=1 & x_{3}=1+3\left(\frac{1}{2}\right)=2 \frac{1}{2} \\ x_{1}=1+\frac{1}{2}=1 \frac{1}{2} & x_{4}=1+4\left(\frac{1}{2}\right)=3\end{array}$
$x_{2}=1+2\left(\frac{1}{2}\right)=2$
The partition is $P=\{1,1.5,2,2.5,3\}$.
b) Approximate the integral by using the following table:

| $k$ | $x_{k}$ | $f\left(x_{k}\right)$ | $m_{k}$ | $m_{k} f\left(x_{k}\right)$ |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 1.4142 | 1 | 2 |
| 1 | 1.5 | 1.8028 | 4 | 7.2112 |
| 2 | 2 | 2.2361 | 2 | 4.4722 |
| 3 | 2.5 | 2.6926 | 4 | 10.7704 |
| 4 | 3 | 3.1623 | 1 | 10 |
| Sum $=\sum_{k=1}^{4} m_{k} f\left(x_{k}\right)$ |  |  |  |  |
| 27.0302 |  |  |  |  |

Hence, $\int_{1}^{3} \sqrt{x^{2}+1} d x \approx \frac{2}{12}[27.0302]=4.5050$.

| $k$ | $x_{k}$ | $f\left(x_{k}\right)$ | $m_{k}$ | $m_{k} f\left(x_{k}\right)$ |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 1.4142 | 1 | 2 |
| 1 | 1.5 | 1.8028 | 4 | 7.2112 |
| 2 | 2 | 2.2361 | 2 | 4.4722 |
| 3 | 2.5 | 2.6926 | 4 | 10.7704 |
| 4 | 3 | 3.1623 | 1 | 10 |
| $S u m=\sum_{k=1}^{4} m_{k} f\left(x_{k}\right)$ |  |  |  |  |
| 27.0302 |  |  |  |  |

Hence, $\int_{1}^{3} \sqrt{x^{2}+1} d x \approx \frac{2}{12}[27.0302]=4.5050$.
2) We estimate the error by using the theorem.

Since $f^{(5)}(x)=-\left(15 x\left(4 x^{2}-3\right)\right) / \sqrt{\left(x^{2}+1\right)^{9}}$, then $f^{(4)}(x)$ is a decreasing function on the interval $[1,3]$. Therefore, $f^{(4)}(x)$ is maximized at $x=1$. Then, $M=\left|f^{(4)}(1)\right|=0.7955$ and

$$
\left|E_{s}\right|<\frac{(0.7955)(3-1)^{5}}{180(4)^{4}}=5.5243 \times 10^{-4}
$$

