Integral Calculus

Dr. M. Alghamdi
Department of Mathematics

January 2, 2019

Chapter 6: Indeterminate Forms and Improper Integrals

Main Contents

(1) Limit rules.
(2) Indeterminate forms.
(3) L'Hôpital's rule.
(4) Improper integrals:

- Infinite intervals.
- Discontinuous integrands.

(1) Indeterminate Forms

Definition

Let f be a defined function on an open interval I and $c \in I$ where f may not be defined at c. Then,

$$
\lim _{x \rightarrow c} f(x)=L, \quad L \in \mathbb{R}
$$

means for every $\epsilon>0$, there is $\delta>0$ such that if $0<|x-c|<\delta$, then $|f(x)-L|<\epsilon$.

Theorem

If $\lim _{x \longrightarrow c} f(x)$ and $\lim _{x \rightarrow c} g(x)$ both exist, then

Sum Rule: $\lim _{x \longrightarrow c}(f(x)+g(x))=\lim _{x \longrightarrow c} f(x)+\lim _{x \rightarrow c} g(x)$.
Difference Rule: $\lim _{x \rightarrow c}(f(x)-g(x))=\lim _{x \longrightarrow c} f(x)-\lim _{x \rightarrow c} g(x)$.
Product Rule: $\lim _{x \rightarrow c}(f(x) \cdot g(x))=\lim _{x \rightarrow c} f(x) \times \lim _{x \rightarrow c} g(x)$.
Constant Multiple Rule: $\lim _{x \rightarrow c}(k f(x))=k \lim _{x \rightarrow c} f(x)$.
Quotient Rule: $\lim _{x \longrightarrow c}\left(\frac{f(x)}{g(x)}\right)=\frac{\lim _{x} f(x)}{x \xrightarrow{\lim _{c} g(x)} \text {. }}$
Power Rule: $\lim _{x \longrightarrow c}(f(x))^{m / n}=\left(\lim _{x \longrightarrow c} f(x)\right)^{m / n}$.

Example

Find each limit if it exists.
(1) $\lim _{x \rightarrow 1} x$
(2) $\lim _{x \rightarrow 8} \sqrt{x}$
(3) $\lim _{x \rightarrow 0}\left(x^{2}-2 x+1\right)$
(4) $\lim _{x \rightarrow \pi} \sin x \cos x$
(5) $\lim _{x \rightarrow 3^{+}} \frac{1}{(x-3)}$
(6) $\lim _{x \rightarrow 1} \frac{x}{\left(x^{2}+1\right)}$

Example

Find each limit if it exists.
(1) $\lim _{x \rightarrow 1} x$
(4) $\lim _{x \rightarrow \pi} \sin x \cos x$
(2) $\lim _{x \rightarrow 8} \sqrt{x}$
(3) $\lim _{x \rightarrow 0}\left(x^{2}-2 x+1\right)$
(5) $\lim _{x \rightarrow 3^{+}} \frac{1}{(x-3)}$
(6) $\lim _{x \rightarrow 1} \frac{x}{\left(x^{2}+1\right)}$

Solution:

(1) $\lim _{x \rightarrow 1} x=1$
(2) $\lim _{x \rightarrow 8} \sqrt{x}=2 \sqrt{2}$
(3) $\lim _{x \rightarrow 0}\left(x^{2}-2 x+1\right)=\lim _{x \rightarrow 0} x^{2}-2 \lim _{x \rightarrow 0} x+\lim _{x \rightarrow 0} 1=1$.
(4) $\lim _{x \rightarrow \pi} \sin x \cos x=\lim _{x \rightarrow \pi} \sin x \lim _{x \rightarrow \pi} \cos x=0$
(5) $\lim _{x \rightarrow 3^{+}} \frac{1}{(x-3)}=\frac{\lim _{x \rightarrow 3^{+}} 1}{\lim _{x \rightarrow 3^{+}}(x-3)}=\infty$
(6) $\lim _{x \rightarrow 1} \frac{x}{\left(x^{2}+1\right)}=\frac{\lim _{x \rightarrow 1} x}{\lim _{x \rightarrow 1}\left(x^{2}+1\right)}=\frac{1}{2}$

Example

Find each limit if it exists.
(1) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=\frac{0}{0}$
(3) $\lim _{x \rightarrow 0^{+}} x^{2} \ln x=0 . \infty$
(2) $\lim _{x \rightarrow \infty} \frac{e^{x}}{x}=\frac{\infty}{\infty}$
(9) $\lim _{x \rightarrow 1^{+}}\left(\frac{1}{x-1}-\frac{1}{\ln x}\right)=\infty-\infty$

Example

Find each limit if it exists.
(1) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=\frac{0}{0}$
(3) $\lim _{x \rightarrow 0^{+}} x^{2} \ln x=0 . \infty$
(2) $\lim _{x \rightarrow \infty} \frac{e^{x}}{x}=\frac{\infty}{\infty}$
(9) $\lim _{x \rightarrow 1^{+}}\left(\frac{1}{x-1}-\frac{1}{\ln x}\right)=\infty-\infty$

In the following table, we categorize the indeterminate forms:

Case	Indeterminate Form
Quotient	$\frac{0}{0}$ and $\frac{\infty}{\infty}$
Product	$0 . \infty$ and $0 .(-\infty)$
Sum \& Difference	$(-\infty)+\infty$ and $\infty-\infty$
Exponent	$0^{0}, 1^{\infty}, 1^{-\infty}$ and ∞^{0}

L'Hôpital's Rule

Theorem

Suppose f and g are differentiable on an interval I and $c \in I$ where f and g may not be differentiable at c. If $\frac{f(x)}{g(x)}$ has the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$ at $x=c$ and $g^{\prime}(x) \neq 0$ for $x \neq c$, then

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

if $\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists or equals to ∞.

L'Hôpital's Rule

Theorem

Suppose f and g are differentiable on an interval I and $c \in I$ where f and g may not be differentiable at c. If $\frac{f(x)}{g(x)}$ has the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$ at $x=c$ and $g^{\prime}(x) \neq 0$ for $x \neq c$, then

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

if $\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists or equals to ∞.

Remark

(1) L'Hôpital's rule works if $c= \pm \infty$ or when $x \rightarrow c^{+}$or $x \rightarrow c^{-}$.
(2) When applying L'Hôpital's rule, we should calculate the derivatives of $f(x)$ and $g(x)$ separately.
(3) Sometimes, we need to apply L'Hôpital's rule twice.

Example

Use L'Hôpital's rule to find each limit if it exists.
(1) $\lim _{x \rightarrow 5} \frac{\sqrt{x-1}-2}{x^{2}-25}$
(3) $\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}}$
(2) $\lim _{x \rightarrow 0} \frac{\sin x}{x}$
(4) $\lim _{x \rightarrow \infty} \frac{e^{x}}{x}$

Example

Use L'Hôpital's rule to find each limit if it exists.
(1) $\lim _{x \rightarrow 5} \frac{\sqrt{x-1}-2}{x^{2}-25}$
(2) $\lim _{x \rightarrow 0} \frac{\sin x}{x}$
(3) $\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}}$
(4) $\lim _{x \rightarrow \infty} \frac{e^{x}}{x}$

Solution:

(1) Since $\lim _{x \rightarrow 5} \sqrt{x-1}-2=0$ and $\lim _{x \rightarrow 5} x^{2}-2=0$, we have the indeterminate form $\frac{0}{0}$.

By applying L'Hôpital's rule, we have

$$
\lim _{x \rightarrow 5} \frac{\sqrt{x-1}-2}{x^{2}-25}=\lim _{x \rightarrow 5} \frac{1}{4 x \sqrt{x-1}}=\frac{1}{40}
$$

(2) The quotient has the indeterminate form $\frac{0}{0}$. We apply L'Hôpital's rule to have

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=\lim _{x \rightarrow 0} \frac{\cos x}{1}=1
$$

(3) The indeterminate form is $\frac{\infty}{\infty}$. Apply L'Hôpital's rule to obtain

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}}=\lim _{x \rightarrow \infty} \frac{2}{\sqrt{x}}=0
$$

(4) The indeterminate form is $\frac{\infty}{\infty}$. By applying L'Hôpital's rule, we have

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{\frac{x}{\text { MATH } 106}}=\lim _{x \rightarrow \infty} \frac{e^{x}}{1}=\infty . a, \quad \text { Dac }
$$

Techniques for finding the limits of other indeterminate forms:

\square Indeterminate form $0 . \infty$.
(1) Write $f(x) g(x)$ as $\frac{f(x)}{1 / g(x)}$ or $\frac{g(x)}{1 / f(x)}$.
(2) Apply L'Hôpital's rule to the resulting indeterminate form $\frac{0}{0}$ or $\frac{\infty}{\infty}$.
\square Indeterminate form $\infty-\infty$.
(1) Write the form as a quotient or product.
(2) Apply L'Hôpital's rule to the resulting indeterminate form $\frac{0}{0}$ or $\frac{\infty}{\infty}$.
\square Indeterminate forms $0^{0}, 1^{\infty}, 1^{-\infty}$ or ∞^{0}.
(1) Let $y=f(x)^{g(x)}$
(2) Take the natural logarithm $\ln y=\ln f(x)^{g(x)}=g(x) \ln f(x)$.
(3) Apply L'Hôpital's rule to the resulting indeterminate form $\frac{0}{0}$ or $\frac{\infty}{\infty}$.

Example

Find each limit if it exists.
(1) $\lim _{x \rightarrow 0^{+}} x^{2} \ln x$
(2) $\lim _{x \rightarrow \frac{\pi}{4}}(1-\tan x) \sec 2 x$
(3) $\lim _{x \rightarrow 1^{+}}\left(\frac{1}{x-1}-\frac{1}{\ln x}\right)$
(4) $\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}$

Solution:

1) The indeterminate form is $0 .(-\infty)$, so we cannot apply L'Hôpital's rule. We need to rearrange the expression in a way that enables us to apply L'Hôpital's rule. By using the previous techniques, we obtain

$$
x^{2} \ln x=\frac{\ln x}{\frac{1}{x^{2}}}
$$

The limit of the new expression is of the form $\frac{\infty}{\infty}$. Therefore, we can apply L'Hôpital's rule:

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\frac{1}{x^{2}}}=\lim _{x \rightarrow 0^{+}} \frac{x^{2}}{-2}=0
$$

Hence, $\lim _{x \rightarrow 0^{+}} x^{2} \ln x=0$.

Solution:

1) The indeterminate form is $0 .(-\infty)$, so we cannot apply L'Hôpital's rule. We need to rearrange the expression in a way that enables us to apply L'Hôpital's rule. By using the previous techniques, we obtain

$$
x^{2} \ln x=\frac{\ln x}{\frac{1}{x^{2}}} .
$$

The limit of the new expression is of the form $\frac{\infty}{\infty}$. Therefore, we can apply L'Hôpital's rule:

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\frac{1}{x^{2}}}=\lim _{x \rightarrow 0^{+}} \frac{x^{2}}{-2}=0
$$

Hence, $\lim _{x \rightarrow 0^{+}} x^{2} \ln x=0$.
2) The indeterminate form is $0 . \infty$, so we try to rewrite the function to apply L'Hôpital's rule. We know that $\sec x=1 / \cos x$, thus

$$
(1-\tan x) \sec 2 x=\frac{(1-\tan x)}{\cos 2 x}
$$

Now, the limit of the new expression is of the form $\frac{0}{0}$. From L'Hôpital's rule, we have

$$
\begin{align*}
\lim _{x \rightarrow \frac{\pi}{4}} \frac{(1-\tan x)}{\cos 2 x} & =\lim _{x \rightarrow \frac{\pi}{4}} \frac{\sec ^{2} x}{2 \sin 2 x} \tag{L'Hôpital'srule}\\
& =\frac{(\sqrt{2})^{2}}{2}=1
\end{align*}
$$

Hence, $\lim _{x \rightarrow \frac{\pi}{4}}(1-\tan x) \sec 2 x=1$.
3) The indeterminate form is $\infty-\infty$. To treat this form, we write the function as a single fraction

$$
\frac{1}{x-1}-\frac{1}{\ln x}=\frac{\ln x-x+1}{(x-1) \ln x}
$$

The new expression takes the indeterminate form $\frac{0}{0}$. From L'Hôpital's rule,

$$
\lim _{x \rightarrow 1^{+}} \frac{\ln x-x+1}{(x-1) \ln x}=\lim _{x \rightarrow 1^{+}} \frac{1-x}{x \ln x+x-1}
$$

We have the indeterminate form $\frac{0}{0}$. We apply L'Hôpital's rule again to have

$$
\lim _{x \rightarrow 1^{+}} \frac{1-x}{x \ln x+x-1}=\lim _{x \rightarrow 1^{+}} \frac{-1}{\ln x+2}=\frac{-1}{2}
$$

Hence, $\lim _{x \rightarrow 1^{+}}\left(\frac{1}{x-1}-\frac{1}{\ln x}\right)=-\frac{1}{2}$.
3) The indeterminate form is $\infty-\infty$. To treat this form, we write the function as a single fraction

$$
\frac{1}{x-1}-\frac{1}{\ln x}=\frac{\ln x-x+1}{(x-1) \ln x}
$$

The new expression takes the indeterminate form $\frac{0}{0}$. From L'Hôpital's rule,

$$
\lim _{x \rightarrow 1^{+}} \frac{\ln x-x+1}{(x-1) \ln x}=\lim _{x \rightarrow 1^{+}} \frac{1-x}{x \ln x+x-1}
$$

We have the indeterminate form $\frac{0}{0}$. We apply L'Hôpital's rule again to have

$$
\lim _{x \rightarrow 1^{+}} \frac{1-x}{x \ln x+x-1}=\lim _{x \rightarrow 1^{+}} \frac{-1}{\ln x+2}=\frac{-1}{2}
$$

Hence, $\lim _{x \rightarrow 1^{+}}\left(\frac{1}{x-1}-\frac{1}{\ln x}\right)=-\frac{1}{2}$.
4) The limit is of the form 1^{∞}. To treat this form, let $y=(1+x)^{\frac{1}{x}}$. By taking the natural logarithm of both sides, we have

$$
\begin{aligned}
\ln y & =\frac{1}{x} \ln (1+x) \\
\Rightarrow \lim _{x \rightarrow 0} \ln y & =\lim _{x \rightarrow 0} \frac{1}{x} \ln (1+x) \\
& =\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x} .
\end{aligned}
$$

The indeterminate form is $\frac{0}{0}$. By applying L'Hôpital's rule, we obtain

$$
\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=\lim _{x \rightarrow 0} \frac{\frac{1}{1+x}}{1}=1
$$

Hence,

$\lim _{x \rightarrow 0} \ln y=1 \Rightarrow e^{\lim _{x \rightarrow 0} \ln y}=e^{1} \quad$ (take the natural exponential function of both sides)

$$
\begin{aligned}
& \Rightarrow \lim _{x \rightarrow 0} e^{(\ln y)}=e \\
& \Rightarrow \lim _{x \rightarrow 0} y=e \\
& \Rightarrow \lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=e
\end{aligned}
$$

$$
\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=\lim _{x \rightarrow 0} \frac{\frac{1}{1+x}}{1}=1
$$

Hence,
$\lim _{x \rightarrow 0} \ln y=1 \Rightarrow e^{\lim _{x \rightarrow 0} \ln y}=e^{1} \quad$ (take the natural exponential function of both sides)

$$
\begin{aligned}
& \Rightarrow \lim _{x \rightarrow 0} e^{(\ln y)}=e \\
& \Rightarrow \lim _{x \rightarrow 0} y=e \\
& \Rightarrow \lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=e
\end{aligned}
$$

(1) Improper Integrals

Definition

The integral $\int_{a}^{b} f(x) d x$ is called a proper integral if
(1) the interval $[a, b]$ is finite and closed, and
(2) $f(x)$ is defined on $[a, b]$.

If condition 1 or 2 is not satisfied, the integral is improper. In the following, we discuss the improper integrals.
(A) Infinite Intervals

Definition

(1) Let f be a continuous function on $[a, \infty)$. The improper integral $\int_{a}^{\infty} f(x) d x$ is defined as follows:

$$
\int_{a}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x \text { if the limit exists. }
$$

(2) Let f be a continuous function on $(-\infty, b]$. The improper integral $\int_{-\infty}^{b} f(x) d x$ is defined as follows:

$$
\int_{-\infty}^{b} f(x) d x=\lim _{t \rightarrow-\infty} \int_{t}^{b} f(x) d x \text { if the limit exists. }
$$

The previous integrals are convergent (or to converge) if the limit exists as a finite number. However, if the limit does not exist or equals $\pm \infty$, the integral is called divergent (or to diverge).
(3) Let f be a continuous function on \mathbb{R} and $a \in \mathbb{R}$. The improper integral $\int_{-\infty}^{\infty} f(x) d x$ is defined as follows:

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x
$$

The integral is convergent if both integrals on the right side are convergent; otherwise the

Note:

(1) If an improper integral is convergent, the value of the integral is the value of the limit.
(2) If both integrals in item 3 converge, then the value of the improper integral is the sum of values of the two integrals.

Example

Determine whether the integral converges or diverges.
(1) $\int_{0}^{\infty} \frac{1}{(x+2)^{2}} d x$
(2) $\int_{0}^{\infty} \frac{x}{1+x^{2}} d x$
(3) $\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x$

Note:

(1) If an improper integral is convergent, the value of the integral is the value of the limit.
(2) If both integrals in item 3 converge, then the value of the improper integral is the sum of values of the two integrals.

Example

Determine whether the integral converges or diverges.
(1) $\int_{0}^{\infty} \frac{1}{(x+2)^{2}} d x$
(2) $\int_{0}^{\infty} \frac{x}{1+x^{2}} d x$
(3) $\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x$

Solution:

1) $\int_{0}^{\infty} \frac{1}{(x+2)^{2}} d x=\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{1}{(x+2)^{2}} d x$.

The integral

$$
\int_{0}^{t} \frac{1}{(x+2)^{2}} d x=\int_{0}^{t}(x+2)^{-2} d x=\left[\frac{-1}{x+2}\right]_{0}^{t}=-\left(\frac{1}{t+2}-\frac{1}{2}\right)
$$

Thus,

$$
\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{1}{(x+2)^{2}} d x=-\lim _{t \rightarrow \infty}\left(\frac{1}{t+2}-\frac{1}{2}\right)=-\left(0-\frac{1}{2}\right)=\frac{1}{2}
$$

This implies that the integral converges and has the value $\frac{1}{2}$.
2) $\int_{0}^{\infty} \frac{x}{1+x^{2}} d x=\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{x}{1+x^{2}} d x$.

The integral

$$
\int_{0}^{t} \frac{x}{1+x^{2}} d x=\frac{1}{2}\left[\ln \left(1+x^{2}\right)\right]_{0}^{t}=\frac{1}{2} \ln \left(1+t^{2}\right)-\frac{1}{2} \ln (1)=\frac{1}{2} \ln \left(1+t^{2}\right)
$$

Thus,

$$
\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{x}{1+x^{2}} d x=\frac{1}{2} \lim _{t \rightarrow \infty} \ln \left(1+t^{2}\right)=\infty
$$

The improper integral diverges.
2) $\int_{0}^{\infty} \frac{x}{1+x^{2}} d x=\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{x}{1+x^{2}} d x$.

The integral

$$
\int_{0}^{t} \frac{x}{1+x^{2}} d x=\frac{1}{2}\left[\ln \left(1+x^{2}\right)\right]_{0}^{t}=\frac{1}{2} \ln \left(1+t^{2}\right)-\frac{1}{2} \ln (1)=\frac{1}{2} \ln \left(1+t^{2}\right)
$$

Thus,

$$
\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{x}{1+x^{2}} d x=\frac{1}{2} \lim _{t \rightarrow \infty} \ln \left(1+t^{2}\right)=\infty
$$

The improper integral diverges.
3) $\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x=\lim _{t \rightarrow-\infty} \int_{t}^{0} \frac{1}{1+x^{2}} d x+\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{1}{1+x^{2}} d x$.

We know that $\int \frac{1}{1+x^{2}} d x=\tan ^{-1} x+c$, so

$$
\begin{aligned}
\lim _{t \rightarrow-\infty} \int_{t}^{0} \frac{1}{1+x^{2}} d x+\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{1}{1+x^{2}} & =\lim _{t \rightarrow-\infty}\left[0-\tan ^{-1}(t)\right]+\lim _{t \rightarrow \infty}\left[\tan ^{-1} t-0\right] \\
& =-\lim _{t \rightarrow-\infty} \tan ^{-1} t+\lim _{t \rightarrow \infty} \tan ^{-1} t \\
& =-\left(-\frac{\pi}{2}\right)+\frac{\pi}{2}=\pi .
\end{aligned}
$$

The integral is convergent and has the value π.

Definition

(1) If f is continuous on $[a, b)$ and has an infinite discontinuity at b i.e., $\lim _{x \rightarrow b^{-}} f(x)= \pm \infty$, then

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow b^{-}} \int_{a}^{t} f(x) d x \text { if the limit exists. }
$$

(2) If f is continuous on $(a, b]$ and has an infinite discontinuity at a i.e., $\lim _{x \rightarrow a^{+}} f(x)= \pm \infty$, then

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow a^{+}} \int_{t}^{a} f(x) d x \text { if the limit exists. }
$$

In items 1 and 2, the integral is convergent if the limit exists as a finite number; otherwise the integral is divergent.
(3) If f is continuous on $[a, b]$ except at $c \in(a, b)$ such that $\lim _{x \rightarrow c^{ \pm}} f(x)= \pm \infty$, the improper integral $\int_{a}^{b} f(x) d x$ is defined as follows:

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

The integral is convergent if both integrals on the right side are convergent; otherwise the integral is divergent.

Example

Determine whether the integral converges or diverges.
(1) $\int_{0}^{4} \frac{1}{(4-x)^{\frac{3}{2}}} d x$
(2) $\int_{0}^{\frac{\pi}{4}} \frac{\cos x}{\sqrt{\sin x}} d x$
(3) $\int_{-3}^{1} \frac{1}{x^{2}} d x$

