MATH107 Vectors and Matrices

Dr. Bandar AI-Mohsin
School of Mathematics, KSU

$$
6-14 / 12 / 16
$$

function of several variables

Let $z=f(x, y)$ be function of two variable x and $y . x, y$ are independent variables, z is dependent variable. Domain is ordered pair (x, y) and values of $f(x, y)$ is called Range.

Examples

(1) Find the domain for the graph of the function $f(x, y)=\sqrt{9-x^{2}-y^{2}}$.
(2) Given that $f(x, y)=4+\sqrt{x^{2}-y^{2}}$, find $f(1,0), f(5,3)$ and $f(4,-2)$. Sketch the domain of function.
(3) Find the domain for the graph of the function $f(x, y)=\frac{\sqrt{x^{2}+y^{2}-16}}{y}$.

Limit Notation

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L \quad \text { or } \quad f(x, y)=L \quad \text { as }(x, y) \rightarrow(a, b)
$$

Examples

(1) Find the limit if exist
(a) $\lim _{(x, y) \rightarrow(1,2)} \frac{x^{2}-x y+y^{2}}{x^{2}+2 x y-2 y+x}$.
(b) $\lim _{(x, y) \rightarrow(2,3)} x^{2}+x y+y^{2}$
(d) $\lim _{(x, y) \rightarrow(2,-3)} x^{3}-4 x y^{2}+5 y-7$
(c) $\lim _{(x, y) \rightarrow(3,4)} \frac{x^{2}-y^{2}}{\sqrt{x^{2}+y^{2}}}$.

Two path Rule

If two different paths to a point $P(a, b)$ produce two different limiting values for f, then $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ does not exist.

Examples

(1) Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ does not exist.
(2) Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does not exist.

Continuity

A function f of two variables is continuous at an interior point (a, b) of its domain if $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$.

Note

(1) Polynomial functions are continuous throghout the entire $x y$-plane.
(2) Rational functions are continuous except at points where the denominator is zero.

Definition: Partial Derivatives

Let f be a function of two variables. The first partial derivatives of f with respect to x and y are the function f_{x} and f_{y}, such that

$$
\begin{aligned}
& f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \\
& f_{y}(x, y)=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}
\end{aligned}
$$

Notation

if $w=f(x, y)$, then

$$
\begin{array}{r}
f_{x}=\frac{\partial f}{\partial x}, \quad f_{y}=\frac{\partial f}{\partial y} \\
f_{x}(x, y)=\frac{\partial}{\partial x} f(x, y)=\frac{\partial w}{\partial x}=w_{x} \\
f_{y}(x, y)=\frac{\partial}{\partial y} f(x, y)=\frac{\partial w}{\partial y}=w_{y} .
\end{array}
$$

Examples

(1) Find the first partial derivative for
(a) $f(x, y)=3 x^{4} y^{3}-4 x^{2}+4 y^{3}+5$,
(b) if $f(x, y)=x^{2} y^{3} z^{4}+2 x-5 y z$.

Second Partial derivatives

$$
\begin{gathered}
\frac{\partial}{\partial x} f_{x}=\left(f_{x}\right)_{x}=f_{x x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}} \\
\frac{\partial}{\partial y} f_{x}=\left(f_{x}\right)_{y}=f_{x y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x} \\
\frac{\partial}{\partial x} f_{y}=\left(f_{y}\right)_{x}=f_{y x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial x \partial y} \\
\frac{\partial}{\partial y} f_{y}=\left(f_{y}\right)_{y}=f_{y y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}}
\end{gathered}
$$

Note
$\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial^{2} f}{\partial x \partial y}$

Examples

(1) Find the second partial derivative of f if $f(x, y)=x y^{4}-2 x^{2} y^{3}+4 x^{2}-3 y$.
(2) Verify that $w_{x y}=w_{y x}$, if $w(x, y)=x^{3} e^{-2 y}+y^{-2} \cos x$.
(3) Find $f_{x y z}$ if $f(x, y, z)=\sqrt{x^{2}+y^{3}+z^{4}}$.

Increments and differentials

Increments

Let $w=f(x, y)$, and let Δx and Δy be increments of x and y, respectively. The increment Δw of $w=f(x, y)$ is

$$
\Delta w=f(x+\Delta x, y+\Delta y)-f(x, y) .
$$

Example 1

Let $w=f(x, y)=3 x^{2}-x y$. (a) If Δx and Δy are increments of x and y, find Δw.
(b) Use Δw to calculate the change in $f(x, y)$ if (x, y) changes from $(1,2)$ to $(1.01,1.98)$.

Increments and differentials

Differentials

Let $w=f(x, y)$, and let Δx and Δy be increments of x and y, respectively.
(i) The differential $d x$ and $d y$ of the independent variables x and y are

$$
d x=\Delta x \text { and } d y=\Delta y
$$

(ii) The differential $d w$ of the independent variables w is

$$
d w=f_{x}(x, y) d x+f_{y}(x, y) d y=\frac{\partial w}{\partial x} d x+\frac{\partial w}{\partial y} d y
$$

Example 2

If $w=f(x, y)=3 x^{2}-x y$, find $d w$ and use it to approximate the change in w if (x, y) changes from $(1,2)$ to $(1.01,1.98)$. How does this compare with the exact change in w ?

Increments and differentials

Note

If $w=f(x, y, z, t)$, then total differential

$$
d w=\frac{\partial w}{\partial x} d x+\frac{\partial w}{\partial y} d y+\frac{\partial w}{\partial z} d z+\frac{\partial w}{\partial t} d t .
$$

Ex 1: Find the total differential of function

$$
w=x^{2} z+4 y t^{3}-x z^{2} t
$$

Ex 2: Use differential to approximate the change in

$$
f(x, y)=x^{2}-2 x y+3 y
$$

if $(1,2)$ changes to $(1.03,1.99)$.

Chain Rule

Chain Rule

If $w=f(u, v)$, with $u=f(x, y), v=f(x, y)$, and if f, g and h are differentiable, then

$$
\begin{aligned}
& \frac{\partial w}{\partial x}=\frac{\partial w}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial w}{\partial v} \frac{\partial v}{\partial x} \\
& \frac{\partial w}{\partial y}=\frac{\partial w}{\partial u} \frac{\partial u}{\partial y}+\frac{\partial w}{\partial v} \frac{\partial v}{\partial y}
\end{aligned}
$$

Ex(1) Use Chain rule to find:
(a) $\frac{\partial w}{\partial p}$ and $\frac{\partial w}{\partial q}$ if $w=r^{3}+s^{2}$, with $r=p q^{2}, s=p^{2} \sin q$.
(b) $\frac{\partial w}{\partial z}$ if $w=r^{2}+s v+t^{3}$, with $r=x^{2}+y^{2}+z^{2}, s=x y z, v=x e^{y}$,
$t=y z^{2}$.
(c) $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $z=p q+q w$, with $p=2 x-y, q=x-2 y$, $w=-2 x+2 y$.
(d) $\frac{\partial p}{\partial r}$ if $p=u^{2}+3 v^{2}-4 w^{2}$, with $u=x-3 y+2 r-s$, $v=2 x+y-r+2 s, w=-x+2 y+r+s$.

Implicit Partial differentiation

Theorem 1

If an equation $F(x, y)=0$ determines, implicitly, a differentiable function f of one variable x such as $y=f(x)$, then

$$
\frac{d y}{d x}=-\frac{F_{x}(x, y)}{F_{y}(x, y)}
$$

Ex(2) Use partial derivatives to find $\frac{d y}{d x}$
(a) if $2 x^{3}+x^{2} y+y^{3}=1$.
(b) if $x^{4}+2 x^{2} y^{2}-3 x y^{3}+2 x=0$.

Implicit Partial differentiation

Theorem 2

If an equation $F(x, y, z)=0$ determines an implicit a differentiable function f of two variables x and y such as $z=f(x, y)$, then

$$
\begin{aligned}
& \frac{d z}{d x}=-\frac{F_{x}(x, y)}{F_{z}(x, y)} \\
& \frac{d z}{d y}=-\frac{F_{y}(x, y)}{F_{z}(x, y)}
\end{aligned}
$$

Ex(2) Use partial derivatives to find $\frac{d z}{d x}$ and $\frac{d z}{d y}$
(a) if $2 x z^{3}+3 y z^{2}+x^{2} y^{2}+4 z=0$.
(b) if $x^{2}+y^{2}+z^{3}=9$.

