MATH107 Vectors and Matrices

Dr. Bandar AI-Mohsin
School of Mathematics, KSU

$$
19-28 / 12 / 16
$$

Directional Derivatives

If f is a differentiable function of two variable and $\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}$ is unit vector, then
$D_{u} f(x, y)=\left[f_{x}(x, y) \mathbf{i}+f_{y}(x, y) \mathbf{j}\right] \cdot\left[u_{1} \mathbf{i}+u_{2} \mathbf{j}\right]=f_{x}(x, y) u_{1}+f_{y}(x, y) u_{2}$

Gradient

If f is a differentiable function of two variable. The gradient of vector f in (two-or three-dimensions) is the vector function given by

$$
\begin{array}{r}
\nabla f(x, y)=f_{x}(x, y) \mathbf{i}+f_{y}(x, y) \mathbf{j} \\
\nabla f(x, y, z)=f_{x}(x, y, z) \mathbf{i}+f_{y}(x, y, z) \mathbf{j}+f_{z}(x, y, z) \mathbf{k}
\end{array}
$$

Directional Derivatives (Gradient form)

$$
D_{u} f(x, y)=\nabla f(x, y) \cdot \mathbf{u}
$$

Examples

(1) Let $f(x, y)=x^{3} y^{2}$. Find the directional derivatives of f at the point $P(-1,2)$ in direction of vector $a=4 \mathbf{i}-3 \mathbf{j}$
(2) Let $f(x, y)=y z^{3}-2 x^{2}$. Find gradient of f at the point $P(2,-3,1)$ in direction of vector $a=4 \mathbf{i}-3 \mathbf{j}$
(3) Find the directional derivatives of $f(x, y, z)=x^{2}+3 y z+4 x y$ at the point $P(1,0,-5)$ in direction of vector $a=2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$.

Gradient Theorem 1

Let f be a differentiable function of two variable at point $P(x, y)$.
(i) The maximum value of $D_{u} f$ at $P(x, y)$ is $\|\nabla f(x, y)\|$.
(ii) The maximum rate of increase of $f(x, y)$ at $P(x, y)$ occurs in the direction of $\nabla f(x, y)$.

Gradient Theorem 2

Let f be a differentiable function of two variable at point $P(x, y)$.
(i) The minimum value of $D_{u} f$ at $P(x, y)$ is $-\|\nabla f(x, y)\|$.
(ii) The minimum rate of increase of $f(x, y)$ at $P(x, y)$ occurs in the direction of $-\nabla f(x, y)$.

Examples

(1) Let $f(x, y)=x^{2}+y^{2}-4 z$. Find ∇f and find the direction of maximum rate of increase of f at the point $P(2,-1,1)$.

Equation of Tangent Planes

An equation for tangent plane to the graph of $F(x, y, z)=0$ at the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ is
$F_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+F_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0$

Figure 12.60

Theorem

An equation for tangent plane to the graph of $z=f(x, y)=0$ at the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
\left(z-z_{0}\right)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

Equation of Normal line

The line perpendicular to the tangent plane at a point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ on a surface S is a normal line to S at P_{0}. If S is the graph of $F(x, y, z)=0$, then the normal line is parallel to the vector $\nabla F\left(x_{0}, y_{0}, z_{0}\right)$.

Examples

(1) Find an equation for tangent plane to the ellipsoid $\frac{3}{4} x^{2}+3 y^{2}+z^{2}=12$ at the point $P(2,1, \sqrt{6})$.
(2) Find an equation for tangent plane to the graph of $x^{2}-4 y^{2}+z^{2}=16$ at the point $P(2,1,4)$.

Examples

(3) Find an equation for tangent plane to the ellipsoid $z=4 x+y^{2}$ at the point $P(-1,3,5)$.
(4) Find an equation of the normal line to the graph of $x^{2}-4 y^{2}+z^{2}=16$ at the point $P(2,1,4)$.
(5) Find equations for the tangent plane and the normal line to the graph of $16 x^{2}-9 y^{2}+36 z^{2}=144$ at the point $P(3,-4,2)$.

Extrema of function of several variables

Critical point

Let $f(x, y)$ have continuous second derivatives. A point (a, b) is a critical point of f if either
(a) $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$ or
(b) $f_{x}(a, b)$ or $f_{y}(a, b)$ does not exist.

Discriminant D of f

Let $f(x, y)$ be a function of two variables that has continuous second derivatives. The discriminate $D(x, y)$ of $f(x, y)$ is given by:

$$
D(x, y)=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right|=f_{x x}(x, y) f_{y y}(x, y)-\left[f_{x y}(x, y)\right]^{2}
$$

Extrema of function of several variables

Second Derivative Partial Test

Let $f(x, y)$ have continuous second derivatives on an open containing a point (a, b) for which
$f_{x}(a, b)=0$ and $f_{y}(a, b)=0$
and $D(x, y)=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}$
(1) If $D>0$ and $f_{x x}(a, b)>0$, then f has a local minimum at (a, b).
(2) If $D>0$ and $f_{x x}(a, b)<0$, then f has a local maximum at (a, b)
(3) If $D<0$ and $(a, b, f(a, b))$ has a saddle point.
(Test fails if $D=0$.

Examples

(1) Find the local extrema and saddle point, if any, of the function $f(x, y)=x^{3}+3 x y-y^{3}$.
(2) Find the local extrema and saddle point, if any, of the function $f(x, y)=\frac{1}{2} x^{4}-2 x^{3}+4 x y+y^{2}$.
(3) Find the local extrema and saddle point, if any, of the function $f(x, y)=3 x^{2}-12 x y+4 y^{3}-36$.

Lagrange Multipliers

Theorem

Let f and g have continuous first partial derivatives such that f has a local maximum or local minimum at $\left(x_{0}, y_{0}\right)$ on the smooth constraint curve $g(x, y)=c$. If $\nabla g(x, y)=0$, then there is a real number λ such that

$$
\nabla f\left(x_{0}, y_{0}\right)=\lambda \nabla g\left(x_{0}, y_{0}\right)
$$

where λ is Lagrange multiplier.

Function of three variables

Suppose $f(x, y, z)$ and $g(x, y, z)$ have continuous first partial derivatives such that f has a local maximum or local minimum at (x_{0}, y_{0}, z_{0}) on the smooth constraint curve $g(x, y, z)=c$. If $\nabla g(x, y, z)=0$, then there is a real number λ such that

$$
\nabla f(x, y, z)=\lambda \nabla g(x, y, z)
$$

Lagrange Multipliers of a function subject to more then one constraints

Suppose $f(x, y, z)$ and $g(x, y, z)$ and $h(x, y, z)$ have continuous first partial derivatives such that f has a local maximum or local minimum at $\left(x_{0}, y_{0}, z_{0}\right)$ on the smooth constraint curve $g(x, y, z)=c$ and $h(x, y, z)=c$. If $\nabla g(x, y, z)=0$ and $\nabla g(x, y, z)=0$, then there is a real number λ such that

$$
\nabla f(x, y, z)=\lambda \nabla g(x, y, z)+\mu \nabla h(x, y, z)
$$

Examples

(1) Use Lagrange multipliers to find maximum value of the function $f(x, y)=x y$ subject to constraint $x+y=16$.
(2) Use Lagrange multipliers to find greatest and smallest values of the function $f(x, y, z)=x+y+z$ subject to constraint $x^{2}+y^{2}+z^{2}=25$.
(3) Use Lagrange multipliers to find extrema of the function $f(x, y, z)=z$ subject to constraints $g(x, y, z)=x^{2}+y^{2}+z^{2}-9$ and $h(x, y, z)=x-y+3 z-6$.

