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Directional Derivatives

If f is a differentiable function of two variable and u = u1i + u2j is unit
vector, then

Duf(x, y) = [fx(x, y)i + fy(x, y)j] · [u1i + u2j] = fx(x, y)u1 + fy(x, y)u2

Gradient

If f is a differentiable function of two variable. The gradient of vector f
in (two-or three-dimensions) is the vector function given by

Of(x, y) = fx(x, y)i + fy(x, y)j.
Of(x, y, z) = fx(x, y, z)i + fy(x, y, z)j + fz(x, y, z)k

Directional Derivatives (Gradient form)

Duf(x, y) = Of(x, y) · u
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Examples
(1) Let f(x, y) = x3y2. Find the directional derivatives of f at the point
P (−1, 2) in direction of vector a = 4i− 3j

(2) Let f(x, y) = yz3 − 2x2. Find gradient of f at the point P (2,−3, 1)
in direction of vector a = 4i− 3j

(3) Find the directional derivatives of f(x, y, z) = x2 + 3yz + 4xy at the
point P (1, 0,−5) in direction of vector a = 2i− 3j + k.

Gradient Theorem 1

Let f be a differentiable function of two variable at point P (x, y).
(i) The maximum value of Duf at P (x, y) is ‖Of(x, y)‖.
(ii) The maximum rate of increase of f(x, y) at P (x, y) occurs in the
direction of Of(x, y).
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Gradient Theorem 2

Let f be a differentiable function of two variable at point P (x, y).
(i) The minimum value of Duf at P (x, y) is −‖Of(x, y)‖.
(ii) The minimum rate of increase of f(x, y) at P (x, y) occurs in the
direction of −Of(x, y).

Examples
(1) Let f(x, y) = x2 + y2 − 4z. Find Of and find the direction of
maximum rate of increase of f at the point P (2,−1, 1).
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Equation of Tangent Planes

An equation for tangent plane to the graph of F (x, y, z) = 0 at the point
P0(x0, y0, z0) is

Fx(x0, y0, z0)(x−x0)+Fy(x0, y0, z0)(y−y0)+Fx(x0, y0, z0)(z−z0) = 0
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Theorem

An equation for tangent plane to the graph of z = f(x, y) = 0 at the
point P0(x0, y0, z0) is

(z − z0) = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

Equation of Normal line

The line perpendicular to the tangent plane at a point P0(x0, y0, z0) on a
surface S is a normal line to S at P0. If S is the graph of F (x, y, z) = 0,
then the normal line is parallel to the vector ∇F (x0, y0, z0).

Examples
(1) Find an equation for tangent plane to the ellipsoid
3
4x

2 + 3y2 + z2 = 12 at the point P (2, 1,
√

6).

(2) Find an equation for tangent plane to the graph of
x2 − 4y2 + z2 = 16 at the point P (2, 1, 4).
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Examples
(3) Find an equation for tangent plane to the ellipsoid z = 4x+ y2 at the
point P (−1, 3, 5).

(4) Find an equation of the normal line to the graph of
x2 − 4y2 + z2 = 16 at the point P (2, 1, 4).

(5) Find equations for the tangent plane and the normal line to the graph
of 16x2 − 9y2 + 36z2 = 144 at the point P (3,−4, 2).
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Extrema of function of several variables

Critical point

Let f(x, y) have continuous second derivatives. A point (a, b) is a critical
point of f if either
(a) fx(a, b) = 0 and fy(a, b) = 0 or
(b) fx(a, b) or fy(a, b) does not exist.

Discriminant D of f

Let f(x, y) be a function of two variables that has continuous second
derivatives. The discriminate D(x, y) of f(x, y) is given by:

D(x, y) =
∣∣∣∣fxx fxy

fxy fyy

∣∣∣∣ = fxx(x, y)fyy(x, y)− [fxy(x, y)]2
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Extrema of function of several variables

Second Derivative Partial Test

Let f(x, y) have continuous second derivatives on an open containing a
point (a, b) for which
fx(a, b) = 0 and fy(a, b) = 0
and D(x, y) = fxx(a, b)fyy(a, b)− [fxy(a, b)]2

1 If D > 0 and fxx(a, b) > 0, then f has a local minimum at (a, b).

2 If D > 0 and fxx(a, b) < 0, then f has a local maximum at (a, b)
3 If D < 0 and (a, b, f(a, b)) has a saddle point.

4 Test fails if D = 0.
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Examples
(1) Find the local extrema and saddle point, if any, of the function
f(x, y) = x3 + 3xy − y3.

(2) Find the local extrema and saddle point, if any, of the function
f(x, y) = 1

2x
4 − 2x3 + 4xy + y2.

(3) Find the local extrema and saddle point, if any, of the function
f(x, y) = 3x2 − 12xy + 4y3 − 36.
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Lagrange Multipliers

Theorem

Let f and g have continuous first partial derivatives such that f has a
local maximum or local minimum at (x0, y0) on the smooth constraint
curve g(x, y) = c. If ∇g(x, y) = 0, then there is a real number λ such
that

∇f(x0, y0) = λ∇g(x0, y0)

where λ is Lagrange multiplier.

Function of three variables

Suppose f(x, y, z) and g(x, y, z) have continuous first partial derivatives
such that f has a local maximum or local minimum at (x0, y0, z0) on the
smooth constraint curve g(x, y, z) = c. If ∇g(x, y, z) = 0, then there is a
real number λ such that

∇f(x, y, z) = λ∇g(x, y, z)
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Lagrange Multipliers of a function subject to more then one constraints

Suppose f(x, y, z) and g(x, y, z) and h(x, y, z) have continuous first
partial derivatives such that f has a local maximum or local minimum at
(x0, y0, z0) on the smooth constraint curve g(x, y, z) = c and
h(x, y, z) = c. If ∇g(x, y, z) = 0 and ∇g(x, y, z) = 0, then there is a real
number λ such that

∇f(x, y, z) = λ∇g(x, y, z) + µ∇h(x, y, z)

Examples
(1) Use Lagrange multipliers to find maximum value of the function
f(x, y) = xy subject to constraint x+ y = 16.

(2) Use Lagrange multipliers to find greatest and smallest values of the
function f(x, y, z) = x+ y + z subject to constraint x2 + y2 + z2 = 25.

(3) Use Lagrange multipliers to find extrema of the function
f(x, y, z) = z subject to constraints g(x, y, z) = x2 + y2 + z2 − 9 and
h(x, y, z) = x− y + 3z − 6.
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