MATH107 Vectors and Matrices

Dr. Bandar AI-Mohsin
School of Mathematics, KSU

$3-5 / 11 / 16$

Notations and Algebra Matrices

1- Matrix: A matrix is rectangular array of objects, written in rows and columns. These objects can be numbers or functions. We write a matrix as follows:

2- Size of Matrix: If a matrix A has m rows and n columns, then we say A is " m by n matrix" and we write it as " $m \times n$ "

Notations and Algebra Matrices

1- Matrix: A matrix is rectangular array of objects, written in rows and columns. These objects can be numbers or functions. We write a matrix as follows:

2- Size of Matrix: If a matrix A has m rows and n columns, then we

Notations and Algebra Matrices

1- Matrix: A matrix is rectangular array of objects, written in rows and columns. These objects can be numbers or functions. We write a matrix as follows:
$A=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right], \quad$ or $\quad\left(\begin{array}{rrrr}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right)$.
2- Size of Matrix: If a matrix A has m rows and n columns, then we
say A is " m by n matrix" and we write it as " $m \times n$ "

Notations and Algebra Matrices

1- Matrix: A matrix is rectangular array of objects, written in rows and columns. These objects can be numbers or functions. We write a matrix as follows:
$A=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right], \quad$ or $\quad\left(\begin{array}{rrrr}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right)$.
2- Size of Matrix: If a matrix A has m rows and n columns, then we say A is " m by n matrix" and we write it as " $m \times n$ ".

Examples:

Examples:

(i) $\left[\begin{array}{cc}2 & 0 \\ 3 & -1\end{array}\right]$ is 2×2 matrix.

Examples:

(i) $\left[\begin{array}{cc}2 & 0 \\ 3 & -1\end{array}\right]$ is 2×2 matrix.
(ii) $\left[\begin{array}{lll}0 & 1 & 2 \\ 9 & 7 & 3 \\ 3 & 5 & 1\end{array}\right]$ is 3×3 matrix.

Examples:

(i) $\left[\begin{array}{cc}2 & 0 \\ 3 & -1\end{array}\right]$ is 2×2 matrix.
(ii) $\left[\begin{array}{lll}0 & 1 & 2 \\ 9 & 7 & 3 \\ 3 & 5 & 1\end{array}\right]$ is 3×3 matrix.
(ii) $\left[\begin{array}{cccc}1 & x & x^{2} & e^{x} \\ x+1 & \sin (x) & -x & 8 \\ 2^{x} & 0 & 15 & \left(x^{3}+5\right)^{100}\end{array}\right]$ is 3×4 matrix.

3- Square Matrix: When $m=n$, then the matrix is square matrix. Example $\left[\begin{array}{cc}2 & 0 \\ 3 & -1\end{array}\right]$ is 2×2 square matrix.

4- Row Matrix: When $m=1$, then the matrix is called row matrix. Example: $\left[\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}\right]$

5- Column Matrix: When $n=1$, then the matrix is called column matrix. Example: $\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5\end{array}\right]$
Exercise: Can we find a matrix which is square, row and column at the same time??

3- Square Matrix: When $m=n$, then the matrix is square matrix. Example $\left[\begin{array}{cc}2 & 0 \\ 3 & -1\end{array}\right]$ is 2×2 square matrix.

4- Row Matrix: When $m=1$, then the matrix is called row matrix. Example: $\left[\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}\right]$

5- Column Matrix: When $n=1$, then the matrix is called column matrix. Example: $\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5\end{array}\right]$
Exercise: Can we find a matrix which is square, row and column at the same time??

3- Square Matrix: When $m=n$, then the matrix is square matrix.

3- Square Matrix: When $m=n$, then the matrix is square matrix.
Example is 2×2 square matrix.

4- Row Matrix: When $m=1$, then the matrix is called row matrix. Example:

5- Column Matrix: When $n=1$, then the matrix is called column matrix. Example:

3- Square Matrix: When $m=n$, then the matrix is square matrix. Example $\left[\begin{array}{cc}2 & 0 \\ 3 & -1\end{array}\right]$ is 2×2 square matrix.

4- Row Matrix: When $m=1$, then the matrix is called row matrix. Example: $\left[\begin{array}{ll}1 & 2\end{array}\right.$

5- Column Matrix: When $n=1$, then the matrix is called column matrix. Example:

3- Square Matrix: When $m=n$, then the matrix is square matrix. Example $\left[\begin{array}{cc}2 & 0 \\ 3 & -1\end{array}\right]$ is 2×2 square matrix.

4- Row Matrix: When $m=1$, then the matrix is called row matrix Example:

5- Column Matrix: When $n=1$, then the matrix is called column matrix. Example: $\left[\begin{array}{c}1 \\ 2 \\ 3 \\ 4 \\ 5 \\ \text { Exercise: Can we find }\end{array}\right]$ same time??

3- Square Matrix: When $m=n$, then the matrix is square matrix.
Example $\left[\begin{array}{cc}2 & 0 \\ 3 & -1\end{array}\right]$ is 2×2 square matrix.
4- Row Matrix: When $m=1$,

Exercise: Can we find a matrix which is square, row and column at the same time??

3- Square Matrix: When $m=n$, then the matrix is square matrix. Example $\left[\begin{array}{cc}2 & 0 \\ 3 & -1\end{array}\right]$ is 2×2 square matrix.
4- Row Matrix: When $m=1$, then the matrix is called row matrix. Example:

5- Column Matrix: When $n=1$, then the matrix is called column

Exercise: Can we find a matrix which is square, row and column at the same time??

3- Square Matrix: When $m=n$, then the matrix is square matrix. Example $\left[\begin{array}{cc}2 & 0 \\ 3 & -1\end{array}\right]$ is 2×2 square matrix.
4- Row Matrix: When $m=1$, then the matrix is called row matrix. Example: $\left[\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}\right]$.

5- Column Matrix: When $n=1$, then the matrix is called column Exercise: Can we find a matrix which is square, row and column at the same time??

3- Square Matrix: When $m=n$, then the matrix is square matrix.
Example $\left[\begin{array}{cc}2 & 0 \\ 3 & -1\end{array}\right]$ is 2×2 square matrix.
4- Row Matrix: When $m=1$, then the matrix is called row matrix.
Example: $\left[\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}\right]$.
5- Column Matrix:

3- Square Matrix: When $m=n$, then the matrix is square matrix. Example $\left[\begin{array}{cc}2 & 0 \\ 3 & -1\end{array}\right]$ is 2×2 square matrix.
4- Row Matrix: When $m=1$, then the matrix is called row matrix.
Example: $\left[\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}\right]$.
5- Column Matrix: When $n=1$,
matrix. Example:

Exercise: Can we find a matrix which is square, row and column at the same time??

3- Square Matrix: When $m=n$, then the matrix is square matrix. Example $\left[\begin{array}{cc}2 & 0 \\ 3 & -1\end{array}\right]$ is 2×2 square matrix.
4- Row Matrix: When $m=1$, then the matrix is called row matrix.
Example: $\left[\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}\right]$.
5- Column Matrix: When $n=1$, then the matrix is called column matrix. Example: Exercise same time??

3- Square Matrix: When $m=n$, then the matrix is square matrix. Example $\left[\begin{array}{cc}2 & 0 \\ 3 & -1\end{array}\right]$ is 2×2 square matrix.
4- Row Matrix: When $m=1$, then the matrix is called row matrix.
Example: $\left[\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}\right]$.
5- Column Matrix: When $n=1$, then the matrix is called column matrix. Example:

3- Square Matrix: When $m=n$, then the matrix is square matrix. Example $\left[\begin{array}{cc}2 & 0 \\ 3 & -1\end{array}\right]$ is 2×2 square matrix.
4- Row Matrix: When $m=1$, then the matrix is called row matrix.
Example: $\left[\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}\right]$.
5- Column Matrix: When $n=1$, then the matrix is called column
matrix. Example: $\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5\end{array}\right]$.

Exercise: Can we find a matrix which is square, row and column at the same time??

3- Square Matrix: When $m=n$, then the matrix is square matrix.
Example $\left[\begin{array}{cc}2 & 0 \\ 3 & -1\end{array}\right]$ is 2×2 square matrix.
4- Row Matrix: When $m=1$, then the matrix is called row matrix.
Example: $\left[\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}\right]$.
5- Column Matrix: When $n=1$, then the matrix is called column
matrix. Example: $\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5\end{array}\right]$.

Exercise: Can we find a matrix which is square, row and column at the same time??.

6- Zero Matrix: A zero matrix is a matrix whose all entries are zero. Example: $0=$ 7- Diagonal Matrix: A square matrix with all its non-diagonal entries zero is called diagonal matrix. Example: $\left[\begin{array}{ccc}500 & 0 & 0 \\ 0 & 10975^{13} & 0 \\ 0 & 0 & 2^{2^{2}}\end{array}\right]$

8- Unit Matrix: A diagonal matrix with all diagonal entries are unity 1 Example: $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

6- Zero Matrix: A zero matrix is a matrix whose all entries are zero. Example: $0=$
7- Diagonal Matrix: A square matrix with all its non-diagonal entries zero is called diagonal matrix. Example: $\left[\begin{array}{ccc}500 & 0 & 0 \\ 0 & 10975^{13} & 0 \\ 0 & 0 & 2^{2^{2}}\end{array}\right]$
8- Unit Matrix: A diagonal matrix with all diagonal entries are unity 1 Example:

6- Zero Matrix: A zero matrix is a matrix whose all entries are zero. Example:

6- Zero Matrix: A zero matrix is a matrix whose all entries are zero. Example: $0=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
7- Diagonal Matrix: A square matrix with all its non-diagonal entries zero is called diagonal matrix. Example: $\left[\begin{array}{ccc}500 & 0 & 0 \\ 0 & 109755^{13} & 0 \\ 0 & 0 & 2^{2^{2}}\end{array}\right]$
8- Unit Matrix: A diagonal matrix with all diagonal entries are unity 1

6- Zero Matrix: A zero matrix is a matrix whose all entries are zero. Example: $0=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
7- Diagonal Matrix:

8- Unit Matrix: A diagonal matrix with all diagonal entries are unity 1

6- Zero Matrix: A zero matrix is a matrix whose all entries are zero. Example: $0=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
7- Diagonal Matrix: A square matrix with all its non-diagonal entries zero is called diagonal matrix.

6- Zero Matrix: A zero matrix is a matrix whose all entries are zero. Example: $0=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
7- Diagonal Matrix: A square matrix with all its non-diagonal entries
zero is called diagonal matrix. Example:

6- Zero Matrix: A zero matrix is a matrix whose all entries are zero. Example: $0=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
7- Diagonal Matrix: A square matrix with all its non-diagonal entries
zero is called diagonal matrix. Example: $\left[\begin{array}{ccc}500 & 0 & 0 \\ 0 & 10975^{13} & 0 \\ 0 & 0 & 2^{2^{2}}\end{array}\right]$

6- Zero Matrix: A zero matrix is a matrix whose all entries are zero. Example: $0=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
7- Diagonal Matrix: A square matrix with all its non-diagonal entries
zero is called diagonal matrix. Example: $\left[\begin{array}{ccc}500 & 0 & 0 \\ 0 & 10975^{13} & 0 \\ 0 & 0 & 2^{2^{2}}\end{array}\right]$

8- Unit Matrix:

6- Zero Matrix: A zero matrix is a matrix whose all entries are zero.
Example: $0=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
7- Diagonal Matrix: A square matrix with all its non-diagonal entries
zero is called diagonal matrix. Example: $\left[\begin{array}{ccc}500 & 0 & 0 \\ 0 & 10975^{13} & 0 \\ 0 & 0 & 2^{2^{2}}\end{array}\right]$

8- Unit Matrix: A diagonal matrix with all diagonal entries are unity 1.

6- Zero Matrix: A zero matrix is a matrix whose all entries are zero.
Example: $0=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
7- Diagonal Matrix: A square matrix with all its non-diagonal entries
zero is called diagonal matrix. Example: $\left[\begin{array}{ccc}500 & 0 & 0 \\ 0 & 10975^{13} & 0 \\ 0 & 0 & 2^{2^{2}}\end{array}\right]$
8- Unit Matrix: A diagonal matrix with all diagonal entries are unity 1.
Example:

6- Zero Matrix: A zero matrix is a matrix whose all entries are zero.
Example: $0=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
7- Diagonal Matrix: A square matrix with all its non-diagonal entries
zero is called diagonal matrix. Example: $\left[\begin{array}{ccc}500 & 0 & 0 \\ 0 & 10975^{13} & 0 \\ 0 & 0 & 2^{2^{2}}\end{array}\right]$
8- Unit Matrix: A diagonal matrix with all diagonal entries are unity 1.
Example: $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

9- Transpose of a Matrix: A transpose of a matrix is obtained by

interchanging between rows and corresponding columns. The transpose of a matrix A is denoted by A^{t}. Example:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right], \quad A^{t}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right]
$$

* Properties of the Transpose of a Matrix:
a ($\left.\Delta^{t}\right)^{t}-1$
(2) $(A B)^{t}=B^{t} A^{t}$.
(3) $(k A)^{t}=k \cdot A^{t}$, where k is a scalar.
- $(A+B)^{t}=A^{t}+B^{t}$

9- Transpose of a Matrix: A transpose of a matrix is obtained by interchanging between rows and corresponding columns.

Properties of the Transpose of a Matrix:
Q $\left(\Delta^{t}\right)^{t}-\Delta$
(2) $(A B)^{t}=B^{t} A^{t}$.
(3) $(k A)^{t}=k \cdot A^{t}$, where k is a scalar
© $(A+B)^{t}=A^{t}+B^{t}$

9- Transpose of a Matrix: A transpose of a matrix is obtained by interchanging between rows and corresponding columns. The transpose of a matrix A is denoted by A^{t}.

Properties of the Transpose of a Matrix:

$\square$$=k . A^{t}$, where k is a scalar

9- Transpose of a Matrix: A transpose of a matrix is obtained by interchanging between rows and corresponding columns. The transpose of a matrix A is denoted by A^{t}. Example:

9- Transpose of a Matrix: A transpose of a matrix is obtained by interchanging between rows and corresponding columns. The transpose of a matrix A is denoted by A^{t}. Example:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \tag{t}\\
4 & 5 & 6
\end{array}\right]
$$

Properties of the Transpose of a Matrix:
(3) $\left(A^{t}\right)^{t}=A$.$=k \cdot A^{t}$, where k is a scalar.

9- Transpose of a Matrix: A transpose of a matrix is obtained by interchanging between rows and corresponding columns. The transpose of a matrix A is denoted by A^{t}. Example:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right], \quad A^{t}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right] .
$$

Properties of the Transpose of a Matrix:
(2) $(A B)^{t}=B^{t} A^{t}$.where k is a scalar

9- Transpose of a Matrix: A transpose of a matrix is obtained by interchanging between rows and corresponding columns. The transpose of a matrix A is denoted by A^{t}. Example:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right], \quad A^{t}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right] .
$$

* Properties of the Transpose of a Matrix:

9- Transpose of a Matrix: A transpose of a matrix is obtained by interchanging between rows and corresponding columns. The transpose of a matrix A is denoted by A^{t}. Example:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right], \quad A^{t}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right] .
$$

* Properties of the Transpose of a Matrix:
(3) $\left(A^{t}\right)^{t}=A$.
(0) $(k A)^{t}=k \cdot A^{t}$, where k is a scalar.

9- Transpose of a Matrix: A transpose of a matrix is obtained by interchanging between rows and corresponding columns. The transpose of a matrix A is denoted by A^{t}. Example:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right], \quad A^{t}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right] .
$$

* Properties of the Transpose of a Matrix:
(3) $\left(A^{t}\right)^{t}=A$.
(2) $(A B)^{t}=B^{t} A^{t}$.
($(k A)^{t}=k \cdot A^{t}$, where k is a scalar

9- Transpose of a Matrix: A transpose of a matrix is obtained by interchanging between rows and corresponding columns. The transpose of a matrix A is denoted by A^{t}. Example:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right], \quad A^{t}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right] .
$$

* Properties of the Transpose of a Matrix:
(3) $\left(A^{t}\right)^{t}=A$.
(2) $(A B)^{t}=B^{t} A^{t}$.
(0) $(k A)^{t}=k . A^{t}$, where k is a scalar.

9- Transpose of a Matrix: A transpose of a matrix is obtained by interchanging between rows and corresponding columns. The transpose of a matrix A is denoted by A^{t}. Example:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right], \quad A^{t}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right] .
$$

* Properties of the Transpose of a Matrix:
(3) $\left(A^{t}\right)^{t}=A$.
(2) $(A B)^{t}=B^{t} A^{t}$.
(0) $(k A)^{t}=k . A^{t}$, where k is a scalar.
($)(A+B)^{t}=A^{t}+B^{t}$.

10- Symmetric Matrix: A square matrix is symmetric, if $A^{t}=A$.

Example:

11- Skew-Symmetric Matrix: A square matrix is skew-symmetric, if $A^{t}=-A$. Example:

10- Symmetric Matrix: A square matrix is symmetric

Example:

11- Skew-Symmetric Matrix: A square matrix is skew-symmetric, if $A^{t}=-A$. Example:

10- Symmetric Matrix: A square matrix is symmetric, if $A^{t}=A$.

11- Skew-Symmetric Matrix: A square matrix is skew-symmetric, if

 $A^{t}=-A$. Example:

10- Symmetric Matrix: A square matrix is symmetric, if $A^{t}=A$. Example:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right]
$$

11- Skew-Symmetric Matrix: A square matrix is skew-symmetric, if $A^{t}=-A$. Example:

10- Symmetric Matrix: A square matrix is symmetric, if $A^{t}=A$. Example:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right], \quad A^{t}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right]
$$

10- Symmetric Matrix: A square matrix is symmetric, if $A^{t}=A$. Example:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right], \quad A^{t}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right], \quad A^{t}=A
$$

$A^{t}=-A$. Example:

10- Symmetric Matrix: A square matrix is symmetric, if $A^{t}=A$. Example:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right], \quad A^{t}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right], \quad A^{t}=A
$$

11- Skew-Symmetric Matrix:

\qquad

 A square10- Symmetric Matrix: A square matrix is symmetric, if $A^{t}=A$. Example:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right], \quad A^{t}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right], \quad A^{t}=A
$$

11- Skew-Symmetric Matrix: A square matrix is skew-symmetric

10- Symmetric Matrix: A square matrix is symmetric, if $A^{t}=A$. Example:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right], \quad A^{t}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right], \quad A^{t}=A
$$

11- Skew-Symmetric Matrix: A square matrix is skew-symmetric , if $A^{t}=-A$.

10- Symmetric Matrix: A square matrix is symmetric, if $A^{t}=A$. Example:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right], \quad A^{t}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right], \quad A^{t}=A
$$

11- Skew-Symmetric Matrix: A square matrix is skew-symmetric , if $A^{t}=-A$. Example:

10- Symmetric Matrix: A square matrix is symmetric, if $A^{t}=A$. Example:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right], \quad A^{t}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right], \quad A^{t}=A
$$

11- Skew-Symmetric Matrix: A square matrix is skew-symmetric , if $A^{t}=-A$. Example:

$$
A=\left[\begin{array}{ccc}
0 & -2 & -3 \\
2 & 0 & -5 \\
3 & 5 & 0
\end{array}\right]
$$

10- Symmetric Matrix: A square matrix is symmetric, if $A^{t}=A$. Example:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right], \quad A^{t}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right], \quad A^{t}=A
$$

11- Skew-Symmetric Matrix: A square matrix is skew-symmetric , if $A^{t}=-A$. Example:

$$
A=\left[\begin{array}{ccc}
0 & -2 & -3 \\
2 & 0 & -5 \\
3 & 5 & 0
\end{array}\right], \quad A^{t}=\left[\begin{array}{ccc}
0 & 2 & 3 \\
-2 & 0 & 5 \\
-3 & -5 & 0
\end{array}\right]
$$

10- Symmetric Matrix: A square matrix is symmetric, if $A^{t}=A$. Example:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right], \quad A^{t}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right], \quad A^{t}=A
$$

11- Skew-Symmetric Matrix: A square matrix is skew-symmetric , if $A^{t}=-A$. Example:

$$
A=\left[\begin{array}{ccc}
0 & -2 & -3 \\
2 & 0 & -5 \\
3 & 5 & 0
\end{array}\right], \quad A^{t}=\left[\begin{array}{ccc}
0 & 2 & 3 \\
-2 & 0 & 5 \\
-3 & -5 & 0
\end{array}\right], \quad A^{t}=-A
$$

10- Symmetric Matrix: A square matrix is symmetric, if $A^{t}=A$. Example:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right], \quad A^{t}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right], \quad A^{t}=A
$$

11- Skew-Symmetric Matrix: A square matrix is skew-symmetric , if $A^{t}=-A$. Example:

$$
A=\left[\begin{array}{ccc}
0 & -2 & -3 \\
2 & 0 & -5 \\
3 & 5 & 0
\end{array}\right], \quad A^{t}=\left[\begin{array}{ccc}
0 & 2 & 3 \\
-2 & 0 & 5 \\
-3 & -5 & 0
\end{array}\right], \quad A^{t}=-A
$$

12- Equality of matrices: Two matrices are equal, if they have the

 same size and the corresponding entries are equal.
Example: Write down the system of equations, if matrices A and B are

 equal

Solution: First we note that they the same size 2×2. If $A=B$, then:

$y-z=6$

12- Equality of matrices: Two matrices are equal,

 same size and the corresponding entries are equal
Example: Write down the system of equations, if matrices A and B are

 equalSolution: First we note that they the same size 2×2. If $A=B$, then:

12- Equality of matrices: Two matrices are equal, if they have the same size and the corresponding entries are equal.

Example: Write down the system of equations, if matrices A and B are equal

12- Equality of matrices: Two matrices are equal, if they have the same size and the corresponding entries are equal.

Example:

Write down the system of equations, if matrices A and B are

Solution: First we note that they the same size 2×2. If $A=B$, then:

12- Equality of matrices: Two matrices are equal, if they have the same size and the corresponding entries are equal.

Example: Write down the system of equations, if matrices A and B are equal

$$
A=\left[\begin{array}{ll}
x-2 & y-3 \\
x+y & z+3
\end{array}\right], \quad B=\left[\begin{array}{cc}
1 & 3+z \\
z & y
\end{array}\right] .
$$

Solution: First we note that they the same size 2×2. If $A=B$, then:

12- Equality of matrices: Two matrices are equal, if they have the same size and the corresponding entries are equal.

Example: Write down the system of equations, if matrices A and B are equal

$$
A=\left[\begin{array}{ll}
x-2 & y-3 \\
x+y & z+3
\end{array}\right], \quad B=\left[\begin{array}{cc}
1 & 3+z \\
z & y
\end{array}\right] .
$$

Solution:

12- Equality of matrices: Two matrices are equal, if they have the same size and the corresponding entries are equal.

Example: Write down the system of equations, if matrices A and B are equal

$$
A=\left[\begin{array}{ll}
x-2 & y-3 \\
x+y & z+3
\end{array}\right], \quad B=\left[\begin{array}{cc}
1 & 3+z \\
z & y
\end{array}\right] .
$$

Solution: First we note that they the same size 2×2.

12- Equality of matrices: Two matrices are equal, if they have the same size and the corresponding entries are equal.

Example: Write down the system of equations, if matrices A and B are equal

$$
A=\left[\begin{array}{ll}
x-2 & y-3 \\
x+y & z+3
\end{array}\right], \quad B=\left[\begin{array}{cc}
1 & 3+z \\
z & y
\end{array}\right] .
$$

Solution: First we note that they the same size 2×2. If $A=B$, then:

12- Equality of matrices: Two matrices are equal, if they have the same size and the corresponding entries are equal.

Example: Write down the system of equations, if matrices A and B are equal

$$
A=\left[\begin{array}{ll}
x-2 & y-3 \\
x+y & z+3
\end{array}\right], \quad B=\left[\begin{array}{cc}
1 & 3+z \\
z & y
\end{array}\right] .
$$

Solution: First we note that they the same size 2×2. If $A=B$, then:

$$
x \quad=3
$$

12- Equality of matrices: Two matrices are equal, if they have the same size and the corresponding entries are equal.

Example: Write down the system of equations, if matrices A and B are equal

$$
A=\left[\begin{array}{ll}
x-2 & y-3 \\
x+y & z+3
\end{array}\right], \quad B=\left[\begin{array}{cc}
1 & 3+z \\
z & y
\end{array}\right] .
$$

Solution: First we note that they the same size 2×2. If $A=B$, then:

x	$=3$
$y-z$	$=6$

12- Equality of matrices: Two matrices are equal, if they have the same size and the corresponding entries are equal.

Example: Write down the system of equations, if matrices A and B are equal

$$
A=\left[\begin{array}{ll}
x-2 & y-3 \\
x+y & z+3
\end{array}\right], \quad B=\left[\begin{array}{cc}
1 & 3+z \\
z & y
\end{array}\right] .
$$

Solution: First we note that they the same size 2×2. If $A=B$, then:

$$
\begin{aligned}
x & =3 \\
y-z & =6 \\
x+y-z & =0
\end{aligned}
$$

12- Equality of matrices: Two matrices are equal, if they have the same size and the corresponding entries are equal.

Example: Write down the system of equations, if matrices A and B are equal

$$
A=\left[\begin{array}{ll}
x-2 & y-3 \\
x+y & z+3
\end{array}\right], \quad B=\left[\begin{array}{cc}
1 & 3+z \\
z & y
\end{array}\right] .
$$

Solution: First we note that they the same size 2×2. If $A=B$, then:

$$
\begin{array}{rc}
x & =3 \\
y-z & =6 \\
x+y-z & =0 \\
-y+z & =-3
\end{array}
$$

12- Addition of matrices:

$$
A+B=\left[\begin{array}{ll}
2+1 & 1-1 \\
3+2 & 4-5 \\
4+3 & 5+4
\end{array}\right]=\left[\begin{array}{cc}
3 & 0 \\
5 & -1 \\
7 & 9
\end{array}\right]
$$

12- Addition of matrices: Matrices of the same size can be added entry wise.

12- Addition of matrices: Matrices of the same size can be added entry wise.

Example:

12- Addition of matrices: Matrices of the same size can be added entry wise.

Example: Find $A+B$

12- Addition of matrices: Matrices of the same size can be added entry wise.
Example: Find $A+B$, where $A=\left[\begin{array}{ll}2 & 1 \\ 3 & 4 \\ 4 & 5\end{array}\right], B=\left[\begin{array}{cc}1 & -1 \\ 2 & -5 \\ 3 & 4\end{array}\right]$. Solution:

12- Addition of matrices: Matrices of the same size can be added entry wise.
Example: Find $A+B$, where $A=\left[\begin{array}{ll}2 & 1 \\ 3 & 4 \\ 4 & 5\end{array}\right], B=\left[\begin{array}{cc}1 & -1 \\ 2 & -5 \\ 3 & 4\end{array}\right]$.
Solution:

12- Addition of matrices: Matrices of the same size can be added entry wise.
Example: Find $A+B$, where $A=\left[\begin{array}{ll}2 & 1 \\ 3 & 4 \\ 4 & 5\end{array}\right], B=\left[\begin{array}{cc}1 & -1 \\ 2 & -5 \\ 3 & 4\end{array}\right]$.
Solution:

$$
A+B
$$

12- Addition of matrices: Matrices of the same size can be added entry wise.
Example: Find $A+B$, where $A=\left[\begin{array}{ll}2 & 1 \\ 3 & 4 \\ 4 & 5\end{array}\right], B=\left[\begin{array}{cc}1 & -1 \\ 2 & -5 \\ 3 & 4\end{array}\right]$.
Solution:

$$
A+B=\left[\begin{array}{ll}
2+1 & 1-1 \\
3+2 & 4-5 \\
4+3 & 5+4
\end{array}\right]=\left[\begin{array}{cc}
3 & 0 \\
5 & -1 \\
7 & 9
\end{array}\right]
$$

12- Addition of matrices: Matrices of the same size can be added entry wise.
Example: Find $A+B$, where $A=\left[\begin{array}{ll}2 & 1 \\ 3 & 4 \\ 4 & 5\end{array}\right], B=\left[\begin{array}{cc}1 & -1 \\ 2 & -5 \\ 3 & 4\end{array}\right]$.
Solution:

$$
A+B=\left[\begin{array}{ll}
2+1 & 1-1 \\
3+2 & 4-5 \\
4+3 & 5+4
\end{array}\right]=\left[\begin{array}{cc}
3 & 0 \\
5 & -1 \\
7 & 9
\end{array}\right]
$$

12- Addition of matrices: Matrices of the same size can be added entry wise.
Example: Find $A+B$, where $A=\left[\begin{array}{ll}2 & 1 \\ 3 & 4 \\ 4 & 5\end{array}\right], B=\left[\begin{array}{cc}1 & -1 \\ 2 & -5 \\ 3 & 4\end{array}\right]$.
Solution:

$$
A+B=\left[\begin{array}{ll}
2+1 & 1-1 \\
3+2 & 4-5 \\
4+3 & 5+4
\end{array}\right]=\left[\begin{array}{cc}
3 & 0 \\
5 & -1 \\
7 & 9
\end{array}\right]
$$

Scalar Multiplication: If a matrix multiplied by a scalar α, then each

 entry is multiplied by scalar α. Examples:$$
A=\left[\begin{array}{lll}
2 & 3 & 2 \\
1 & 2 & 1 \\
4 & 1 & 4
\end{array}\right], \quad 2 A=\left[\begin{array}{lll}
4 & 6 & 4 \\
2 & 4 & 2 \\
8 & 2 & 8
\end{array}\right], \quad k A=\left[\begin{array}{ccc}
2 . k & 3 . k & 2 . k \\
1 . k & 2 . k & 1 . k \\
4 . k & 1 . k & 4 . k
\end{array}\right]
$$

Scalar Multiplication: If a matrix multiplied by a scalar α, then each entry is multiplied by scalar α.

Scalar Multiplication: If a matrix multiplied by a scalar α, then each entry is multiplied by scalar α. Examples:

$$
A=\left[\begin{array}{lll}
2 & 3 & 2 \\
1 & 2 & 1 \\
4 & 1 & 4
\end{array}\right]
$$

Scalar Multiplication: If a matrix multiplied by a scalar α, then each entry is multiplied by scalar α. Examples:

$$
A=\left[\begin{array}{lll}
2 & 3 & 2 \\
1 & 2 & 1 \\
4 & 1 & 4
\end{array}\right], \quad 2 A=\left[\begin{array}{lll}
4 & 6 & 4 \\
2 & 4 & 2 \\
8 & 2 & 8
\end{array}\right]
$$

Scalar Multiplication: If a matrix multiplied by a scalar α, then each entry is multiplied by scalar α. Examples:

$$
A=\left[\begin{array}{lll}
2 & 3 & 2 \\
1 & 2 & 1 \\
4 & 1 & 4
\end{array}\right], \quad 2 A=\left[\begin{array}{lll}
4 & 6 & 4 \\
2 & 4 & 2 \\
8 & 2 & 8
\end{array}\right],
$$

Scalar Multiplication: If a matrix multiplied by a scalar α, then each entry is multiplied by scalar α. Examples:

$$
A=\left[\begin{array}{lll}
2 & 3 & 2 \\
1 & 2 & 1 \\
4 & 1 & 4
\end{array}\right], \quad 2 A=\left[\begin{array}{lll}
4 & 6 & 4 \\
2 & 4 & 2 \\
8 & 2 & 8
\end{array}\right], \quad k A
$$

Scalar Multiplication: If a matrix multiplied by a scalar α, then each entry is multiplied by scalar α. Examples:

$$
A=\left[\begin{array}{lll}
2 & 3 & 2 \\
1 & 2 & 1 \\
4 & 1 & 4
\end{array}\right], \quad 2 A=\left[\begin{array}{lll}
4 & 6 & 4 \\
2 & 4 & 2 \\
8 & 2 & 8
\end{array}\right], \quad k A=\left[\begin{array}{ccc}
2 . k & 3 . k & 2 . k \\
1 . k & 2 . k & 1 . k \\
4 . k & 1 . k & 4 . k
\end{array}\right] .
$$

Matrix Multiplication:

 Le the necessary condition for $A B$ to be exists is $m=k$ (for $B A$, we must have $p=n$). Note that the multiplication is not abelian i.e. $A B \neq B A$. Example: $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $B=\binom{x}{y}$. Then,$$
A B=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{a x+b y}{c x+d y}
$$

$B A$ is not exists!!

Matrix Multiplication: Let A be a $n \times m$ matrix and B is a $k \times p$. have $p=n$). Note that the multiplication is not abelian i.e. $A B \neq B A$. Example: $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $B=\binom{x}{y}$. Then, $A B=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{x}{y}=\binom{a x+b y}{c x+d y}$

Matrix Multiplication: Let A be a $n \times m$ matrix and B is a $k \times p$. Then the necessary condition for $A B$ to be exists is $m=k$

Matrix Multiplication: Let A be a $n \times m$ matrix and B is a $k \times p$. Then the necessary condition for $A B$ to be exists is $m=k$ (for $B A$, we must have

Example: $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $B=\binom{x}{y}$. Then,

Matrix Multiplication: Let A be a $n \times m$ matrix and B is a $k \times p$. Then the necessary condition for $A B$ to be exists is $m=k$ (for $B A$, we must have $p=n$).

Example: $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $B=\binom{x}{y}$. Then,

Matrix Multiplication: Let A be a $n \times m$ matrix and B is a $k \times p$. Then the necessary condition for $A B$ to be exists is $m=k$ (for $B A$, we must have $p=n$). Note that the multiplication is not abelian i.e. $A B \neq B A$.

Matrix Multiplication: Let A be a $n \times m$ matrix and B is a $k \times p$. Then the necessary condition for $A B$ to be exists is $m=k$ (for $B A$, we must have $p=n$). Note that the multiplication is not abelian i.e. $A B \neq B A$.

Example: $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $B=\binom{x}{y}$. Then,

Matrix Multiplication: Let A be a $n \times m$ matrix and B is a $k \times p$. Then the necessary condition for $A B$ to be exists is $m=k$ (for $B A$, we must have $p=n$). Note that the multiplication is not abelian i.e. $A B \neq B A$.

Example: $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $B=\binom{x}{y}$.

Matrix Multiplication: Let A be a $n \times m$ matrix and B is a $k \times p$. Then the necessary condition for $A B$ to be exists is $m=k$ (for $B A$, we must have $p=n$). Note that the multiplication is not abelian i.e. $A B \neq B A$.

Example: $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $B=\binom{x}{y}$. Then,

Matrix Multiplication: Let A be a $n \times m$ matrix and B is a $k \times p$. Then the necessary condition for $A B$ to be exists is $m=k$ (for $B A$, we must have $p=n$). Note that the multiplication is not abelian i.e. $A B \neq B A$.

Example: $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $B=\binom{x}{y}$. Then,

$$
A B
$$

Matrix Multiplication: Let A be a $n \times m$ matrix and B is a $k \times p$. Then the necessary condition for $A B$ to be exists is $m=k$ (for $B A$, we must have $p=n$). Note that the multiplication is not abelian i.e. $A B \neq B A$.

Example: $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $B=\binom{x}{y}$. Then,

$$
A B=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{a x+b y}{c x+d y}
$$

Matrix Multiplication: Let A be a $n \times m$ matrix and B is a $k \times p$. Then the necessary condition for $A B$ to be exists is $m=k$ (for $B A$, we must have $p=n$). Note that the multiplication is not abelian i.e. $A B \neq B A$.

Example: $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $B=\binom{x}{y}$. Then,

$$
A B=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{a x+b y}{c x+d y}
$$

Matrix Multiplication: Let A be a $n \times m$ matrix and B is a $k \times p$. Then the necessary condition for $A B$ to be exists is $m=k$ (for $B A$, we must have $p=n$). Note that the multiplication is not abelian i.e. $A B \neq B A$.

Example: $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $B=\binom{x}{y}$. Then,

$$
A B=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{a x+b y}{c x+d y}
$$

Matrix Multiplication: Let A be a $n \times m$ matrix and B is a $k \times p$. Then the necessary condition for $A B$ to be exists is $m=k$ (for $B A$, we must have $p=n$). Note that the multiplication is not abelian i.e. $A B \neq B A$.

Example: $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $B=\binom{x}{y}$. Then,

$$
A B=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{a x+b y}{c x+d y}
$$

. $B A$ is not exists!!

Example: Find $A B$, where $A=\left(\begin{array}{lll}1 & 2 & 4 \\ 2 & 6 & 0\end{array}\right), B=\left(\begin{array}{cccc}4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2\end{array}\right)$.

Example: Find $A B$, where $A=\left(\begin{array}{lll}1 & 2 & 4 \\ 2 & 6 & 0\end{array}\right), B=\left(\begin{array}{cccc}4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2\end{array}\right)$.

Solution:

Example: Find $A B$, where $A=\left(\begin{array}{lll}1 & 2 & 4 \\ 2 & 6 & 0\end{array}\right), B=\left(\begin{array}{cccc}4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2\end{array}\right)$.

Solution:

$$
\begin{aligned}
& A \\
& 2 \times 3
\end{aligned} \quad \begin{gathered}
B \\
3 \times 4
\end{gathered} \quad C \text { 2×4 }
$$

Example: Find $A B$, where $A=\left(\begin{array}{lll}1 & 2 & 4 \\ 2 & 6 & 0\end{array}\right), B=\left(\begin{array}{cccc}4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2\end{array}\right)$.

Solution:

$$
\left.\begin{array}{cccc}
A & \times & B & = \\
2 \times 3 & C \\
3 \times 4 & & 2 \times 4
\end{array}\right)
$$

Example: Find $A B$, where $A=\left(\begin{array}{lll}1 & 2 & 4 \\ 2 & 6 & 0\end{array}\right), B=\left(\begin{array}{cccc}4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2\end{array}\right)$.

Solution:

$$
\left.\begin{array}{cccc}
A & \times & B & = \\
2 \times 3 & C \\
3 \times 4 & & 2 \times 4
\end{array}\right)
$$

Example: Find $A B$, where $A=\left(\begin{array}{lll}1 & 2 & 4 \\ 2 & 6 & 0\end{array}\right), B=\left(\begin{array}{cccc}4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2\end{array}\right)$.

Solution:

$$
\begin{array}{lc}
A & \times \\
2 \times 3 & B \\
2 \times 4 & C \\
2 \times 4
\end{array}
$$

$$
C=A B=\left(\begin{array}{llll}
c_{11} & c_{12} & c_{13} & c_{14} \\
c_{21} & c_{22} & c_{23} & c_{24}
\end{array}\right)
$$

$$
c_{11}=1(4)+2(0)+4(2)=12
$$

Example: Find $A B$, where $A=\left(\begin{array}{lll}1 & 2 & 4 \\ 2 & 6 & 0\end{array}\right), B=\left(\begin{array}{cccc}4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2\end{array}\right)$.

Solution:

$$
\begin{array}{lc}
A & \times \\
2 \times 3 & B \\
3 \times 4 & C \\
2 \times 4
\end{array}
$$

$$
C=A B=\left(\begin{array}{llll}
c_{11} & c_{12} & c_{13} & c_{14} \\
c_{21} & c_{22} & c_{23} & c_{24}
\end{array}\right)
$$

$$
\begin{gathered}
c_{11}=1(4)+2(0)+4(2)=12 \\
c_{12}=1(1)+2(-1)+4(7)=27
\end{gathered}
$$

Example: Find $A B$, where $A=\left(\begin{array}{lll}1 & 2 & 4 \\ 2 & 6 & 0\end{array}\right), B=\left(\begin{array}{cccc}4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2\end{array}\right)$.

Solution:

$$
\begin{array}{lc}
A & \times \\
2 \times 3 & B \\
3 \times 4 & C \\
2 \times 4
\end{array}
$$

$$
C=A B=\left(\begin{array}{llll}
c_{11} & c_{12} & c_{13} & c_{14} \\
c_{21} & c_{22} & c_{23} & c_{24}
\end{array}\right)
$$

$$
\begin{gathered}
c_{11}=1(4)+2(0)+4(2)=12, \\
c_{12}=1(1)+2(-1)+4(7)=27, \\
c_{13}=1(4)+2(3)+4(5)=30,
\end{gathered}
$$

Example: Find $A B$, where $A=\left(\begin{array}{lll}1 & 2 & 4 \\ 2 & 6 & 0\end{array}\right), B=\left(\begin{array}{cccc}4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2\end{array}\right)$.

Solution:

$$
\begin{array}{lccl}
A & \times & B & = \\
2 \times 3 & & 3 \times 4 & \\
2 \times 4
\end{array}
$$

$$
C=A B=\left(\begin{array}{llll}
c_{11} & c_{12} & c_{13} & c_{14} \\
c_{21} & c_{22} & c_{23} & c_{24}
\end{array}\right)
$$

$$
\begin{gathered}
c_{11}=1(4)+2(0)+4(2)=12 \\
c_{12}=1(1)+2(-1)+4(7)=27 \\
c_{13}=1(4)+2(3)+4(5)=30 \\
c_{14}=1(3)+2(1)+4(2)=13
\end{gathered}
$$

Example: Find $A B$, where $A=\left(\begin{array}{lll}1 & 2 & 4 \\ 2 & 6 & 0\end{array}\right), B=\left(\begin{array}{cccc}4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2\end{array}\right)$.

Solution:

$$
\begin{array}{lccl}
A & \times & B & = \\
2 \times 3 & & 3 \times 4 & \\
2 \times 4
\end{array}
$$

$$
C=A B=\left(\begin{array}{llll}
c_{11} & c_{12} & c_{13} & c_{14} \\
c_{21} & c_{22} & c_{23} & c_{24}
\end{array}\right)
$$

$$
\begin{aligned}
& c_{11}=1(4)+2(0)+4(2)=12 \\
& c_{12}=1(1)+2(-1)+4(7)=27 \\
& c_{13}=1(4)+2(3)+4(5)=30 \\
& c_{14}=1(3)+2(1)+4(2)=13 \\
& c_{21}=2(4)+6(0)+0(2)=8
\end{aligned}
$$

Example: Find $A B$, where $A=\left(\begin{array}{lll}1 & 2 & 4 \\ 2 & 6 & 0\end{array}\right), B=\left(\begin{array}{cccc}4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2\end{array}\right)$.

Solution:

$$
\begin{array}{lcc}
A & \times & B \\
2 \times 3 & & C \\
3 \times 4
\end{array}
$$

$$
C=A B=\left(\begin{array}{llll}
c_{11} & c_{12} & c_{13} & c_{14} \\
c_{21} & c_{22} & c_{23} & c_{24}
\end{array}\right)
$$

$$
c_{11}=1(4)+2(0)+4(2)=12
$$

$$
c_{12}=1(1)+2(-1)+4(7)=27,
$$

$$
c_{13}=1(4)+2(3)+4(5)=30
$$

$$
c_{14}=1(3)+2(1)+4(2)=13
$$

$$
c_{21}=2(4)+6(0)+0(2)=8
$$

$$
c_{22}=2(1)+6(-1)+0(7)=-4
$$

Example: Find $A B$, where $A=\left(\begin{array}{lll}1 & 2 & 4 \\ 2 & 6 & 0\end{array}\right), B=\left(\begin{array}{cccc}4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2\end{array}\right)$.

Solution:

$$
\begin{array}{lccl}
A & \times & B & = \\
2 \times 3 & & 3 \times 4
\end{array}
$$

$$
C=A B=\left(\begin{array}{llll}
c_{11} & c_{12} & c_{13} & c_{14} \\
c_{21} & c_{22} & c_{23} & c_{24}
\end{array}\right)
$$

$$
\begin{aligned}
& c_{11}=1(4)+2(0)+4(2)=12 \\
& c_{12}=1(1)+2(-1)+4(7)=27 \\
& c_{13}=1(4)+2(3)+4(5)=30 \\
& c_{14}=1(3)+2(1)+4(2)=13 \\
& c_{21}=2(4)+6(0)+0(2)=8 \\
& c_{22}=2(1)+6(-1)+0(7)=-4 \\
& c_{23}=2(4)+6(3)+0(5)=26
\end{aligned}
$$

Example: Find $A B$, where $A=\left(\begin{array}{lll}1 & 2 & 4 \\ 2 & 6 & 0\end{array}\right), B=\left(\begin{array}{cccc}4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2\end{array}\right)$.

Solution:

$$
\begin{array}{lccl}
A & \times & B & = \\
2 \times 3 & & 3 \times 4
\end{array}
$$

$$
C=A B=\left(\begin{array}{llll}
c_{11} & c_{12} & c_{13} & c_{14} \\
c_{21} & c_{22} & c_{23} & c_{24}
\end{array}\right)
$$

$$
\begin{aligned}
& c_{11}=1(4)+2(0)+4(2)=12 \\
& c_{12}=1(1)+2(-1)+4(7)=27 \\
& c_{13}=1(4)+2(3)+4(5)=30 \\
& c_{14}=1(3)+2(1)+4(2)=13 \\
& c_{21}=2(4)+6(0)+0(2)=8 \\
& c_{22}=2(1)+6(-1)+0(7)=-4 \\
& c_{23}=2(4)+6(3)+0(5)=26 \\
& c_{24}=2(3)+6(1)+0(2)=12
\end{aligned}
$$

Example: Find $A B$, where $A=\left(\begin{array}{lll}1 & 2 & 4 \\ 2 & 6 & 0\end{array}\right), B=\left(\begin{array}{cccc}4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2\end{array}\right)$.

Solution:

$$
\begin{array}{lccl}
A & \times & B & = \\
2 \times 3 & & 3 \times 4
\end{array}
$$

$$
C=A B=\left(\begin{array}{llll}
c_{11} & c_{12} & c_{13} & c_{14} \\
c_{21} & c_{22} & c_{23} & c_{24}
\end{array}\right)
$$

$$
\begin{aligned}
& c_{11}=1(4)+2(0)+4(2)=12 \\
& c_{12}=1(1)+2(-1)+4(7)=27 \\
& c_{13}=1(4)+2(3)+4(5)=30 \\
& c_{14}=1(3)+2(1)+4(2)=13 \\
& c_{21}=2(4)+6(0)+0(2)=8 \\
& c_{22}=2(1)+6(-1)+0(7)=-4 \\
& c_{23}=2(4)+6(3)+0(5)=26 \\
& c_{24}=2(3)+6(1)+0(2)=12
\end{aligned}
$$

Therefore,

Therefore,

$$
A B=\left(\begin{array}{lll}
1 & 2 & 4 \\
2 & 6 & 0
\end{array}\right)\left(\begin{array}{cccc}
4 & 1 & 4 & 3 \\
0 & -1 & 3 & 1 \\
2 & 7 & 5 & 2
\end{array}\right)
$$

Therefore,

$$
A B=\left(\begin{array}{lll}
1 & 2 & 4 \\
2 & 6 & 0
\end{array}\right)\left(\begin{array}{cccc}
4 & 1 & 4 & 3 \\
0 & -1 & 3 & 1 \\
2 & 7 & 5 & 2
\end{array}\right)=\left(\begin{array}{cccc}
12 & 27 & 30 & 13 \\
8 & -4 & 26 & 12
\end{array}\right) .
$$

Inverse of a 2×2 Matrix

The inverse of a 2×2 matrix A is a 2×2 matrix A^{-1}, such that
 If $a d-b c \neq 0$, then the inverse of

Inverse of a 2×2 Matrix

The inverse of a 2×2 matrix A is a 2×2 matrix A^{-1}, such that

Inverse of a 2×2 Matrix

The inverse of a 2×2 matrix A is a 2×2 matrix A^{-1}, such that $A^{-1} A=A A^{-1}=I_{2}$.

Inverse of a 2×2 Matrix

The inverse of a 2×2 matrix A is a 2×2 matrix A^{-1}, such that $A^{-1} A=A A^{-1}=I_{2}$.

Consider a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
4 is given by

Example: The inverse of $A=$

Inverse of a 2×2 Matrix

The inverse of a 2×2 matrix A is a 2×2 matrix A^{-1}, such that $A^{-1} A=A A^{-1}=I_{2}$.

Consider a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, A is given by

Inverse of a 2×2 Matrix

The inverse of a 2×2 matrix A is a 2×2 matrix A^{-1}, such that $A^{-1} A=A A^{-1}=I_{2}$.

Consider a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then the inverse of A is given by

Inverse of a 2×2 Matrix

The inverse of a 2×2 matrix A is a 2×2 matrix A^{-1}, such that $A^{-1} A=A A^{-1}=I_{2}$.

Consider a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then the inverse of A is given by
$A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
Example: The inverse of $A=\left[\begin{array}{ll}2 & 3 \\ 5 & 4\end{array}\right]$ is $A^{-1}=\frac{1}{-7}\left[\begin{array}{cc}4 & -3 \\ -5 & 2\end{array}\right]$

Inverse of a 2×2 Matrix

The inverse of a 2×2 matrix A is a 2×2 matrix A^{-1}, such that $A^{-1} A=A A^{-1}=I_{2}$.

Consider a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then the inverse of A is given by
$A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
Example: The inverse of $A=\left[\begin{array}{ll}2 & 3 \\ 5 & 4\end{array}\right]$

Inverse of a 2×2 Matrix

The inverse of a 2×2 matrix A is a 2×2 matrix A^{-1}, such that $A^{-1} A=A A^{-1}=I_{2}$.

Consider a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then the inverse of A is given by
$A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
Example: The inverse of $A=\left[\begin{array}{ll}2 & 3 \\ 5 & 4\end{array}\right]$ is $A^{-1}=\frac{1}{-7}\left[\begin{array}{c}4 \\ -5\end{array}\right.$

Inverse of a 2×2 Matrix

The inverse of a 2×2 matrix A is a 2×2 matrix A^{-1}, such that $A^{-1} A=A A^{-1}=I_{2}$.

Consider a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then the inverse of A is given by
$A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
Example: The inverse of $A=\left[\begin{array}{ll}2 & 3 \\ 5 & 4\end{array}\right]$ is $A^{-1}=\frac{1}{-7}$

Inverse of a 2×2 Matrix

The inverse of a 2×2 matrix A is a 2×2 matrix A^{-1}, such that $A^{-1} A=A A^{-1}=I_{2}$.

Consider a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then the inverse of A is given by
$A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
Example: The inverse of $A=\left[\begin{array}{ll}2 & 3 \\ 5 & 4\end{array}\right]$ is $A^{-1}=\frac{1}{-7}\left[\begin{array}{cc}4 & -3 \\ -5 & 2\end{array}\right]$

Properties of inverse

(1) $A^{-1} A=A A^{-1}=I$.

Properties of inverse

(1) $A^{-1} A=A A^{-1}=I$.
(2) If A and B are invertible matrices of the same size, then $A B$ is also invertible and $(A B)^{-1}=B^{-1} A^{-1}$.

Power of a Matrix:

(1) $A^{0}=I$.

$A^{r} A^{s}=A^{r+s}$$\left(\Delta^{r}\right)^{s}-\Delta^{r s}$
(3) $\left(A^{-1}\right)^{-1}=A$.

Power of a Matrix:

(1) $A^{0}=I$.
(3) $A^{n}=\underbrace{A \ldots A}_{n-\text { times }}$.

Power of a Matrix:

(1) $A^{0}=I$.
(2) $A^{n}=\underbrace{A \ldots A}_{n-\text { times }}$.
(3) $A^{-n}=\left(A^{-1}\right)^{n}=\underbrace{A^{-1} \ldots A^{-1}}_{n-\text { times }}$.

Power of a Matrix:

(3) $A^{0}=I$.
(2) $A^{n}=\underbrace{A \ldots A}_{n-\text { times }}$.
(3) $A^{-n}=\left(A^{-1}\right)^{n}=\underbrace{A^{-1} \ldots A^{-1}}_{n-\text { times }}$.
(1) $A^{r} A^{s}=A^{r+s}$.

Power of a Matrix:

(3) $A^{0}=I$.
(2) $A^{n}=\underbrace{A \ldots A}_{n-\text { times }}$.
(3) $A^{-n}=\left(A^{-1}\right)^{n}=\underbrace{A^{-1} \ldots A^{-1}}_{n-\text { times }}$.
(1) $A^{r} A^{s}=A^{r+s}$.
(3) $\left(A^{r}\right)^{s}=A^{r s}$.

Power of a Matrix:

(3) $A^{0}=I$.
(2) $A^{n}=\underbrace{A \ldots A}_{n-\text { times }}$.
(3) $A^{-n}=\left(A^{-1}\right)^{n}=\underbrace{A^{-1} \ldots A^{-1}}_{n-\text { times }}$.
(1) $A^{r} A^{s}=A^{r+s}$.
(3) $\left(A^{r}\right)^{s}=A^{r s}$.
(0) $\left(A^{-1}\right)^{-1}=A$.

Power of a Matrix:

(3) $A^{0}=I$.
(2) $A^{n}=\underbrace{A \ldots A}_{n-\text { times }}$.
(3) $A^{-n}=\left(A^{-1}\right)^{n}=\underbrace{A^{-1} \ldots A^{-1}}_{n-\text { times }}$.
(9) $A^{r} A^{s}=A^{r+s}$.
(0) $\left(A^{r}\right)^{s}=A^{r s}$.
(c) $\left(A^{-1}\right)^{-1}=A$.
(1) $\left(A^{n}\right)^{-1}=\left(A^{-1}\right)^{n}, n \geq 0$.

Power of a Matrix:

(3) $A^{0}=I$.
(2) $A^{n}=\underbrace{A \ldots A}_{n-\text { times }}$.
(3) $A^{-n}=\left(A^{-1}\right)^{n}=\underbrace{A^{-1} \ldots A^{-1}}_{n-\text { times }}$.
(9) $A^{r} A^{s}=A^{r+s}$.
(1) $\left(A^{r}\right)^{s}=A^{r s}$.
(1) $\left(A^{-1}\right)^{-1}=A$.
(3) $\left(A^{n}\right)^{-1}=\left(A^{-1}\right)^{n}, n \geq 0$.
(3) $(k A)^{-1}=\frac{1}{k} A^{-1}$.

Example: Let A be the matrix

$$
\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right] .
$$

Compute $A^{3}, A^{-3}, A^{2}-2 A+I$.

Example: Let A be the matrix

$$
\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right] .
$$

Compute $A^{3}, A^{-3}, A^{2}-2 A+I$.

$$
\begin{equation*}
A^{2}=A A \tag{array}
\end{equation*}
$$

Example: Let A be the matrix

$$
\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right] .
$$

Compute $A^{3}, A^{-3}, A^{2}-2 A+I$.

$$
A^{2}=A A=\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]
$$

Example: Let A be the matrix

$$
\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right] .
$$

Compute $A^{3}, A^{-3}, A^{2}-2 A+I$.

$$
A^{2}=A A=\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]=\left[\begin{array}{cc}
4 & 0 \\
12 & 1
\end{array}\right]
$$

Example: Let A be the matrix

$$
\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right] .
$$

Compute $A^{3}, A^{-3}, A^{2}-2 A+I$.

$$
\begin{aligned}
& A^{2}=A A=\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]=\left[\begin{array}{cc}
4 & 0 \\
12 & 1
\end{array}\right] \\
& A^{3}=A^{2} A=\left[\begin{array}{ll}
4 & 0
\end{array}\right]\left[\begin{array}{l}
2
\end{array}\right.
\end{aligned}
$$

Example: Let A be the matrix

$$
\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right] .
$$

Compute $A^{3}, A^{-3}, A^{2}-2 A+I$.

$$
\begin{aligned}
& A^{2}=A A=\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]=\left[\begin{array}{cc}
4 & 0 \\
12 & 1
\end{array}\right] \\
& A^{3}=A^{2} A=\left[\begin{array}{ll}
4
\end{array}\right.
\end{aligned}
$$

Example: Let A be the matrix

$$
\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right] .
$$

Compute $A^{3}, A^{-3}, A^{2}-2 A+I$.

$$
\begin{aligned}
& A^{2}=A A=\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]=\left[\begin{array}{cc}
4 & 0 \\
12 & 1
\end{array}\right] \\
& A^{3}=A^{2} A=\left[\begin{array}{cc}
4 & 0 \\
12 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]=\left[\begin{array}{c}
8 \\
28
\end{array}\right.
\end{aligned}
$$

Example: Let A be the matrix

$$
\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]
$$

Compute $A^{3}, A^{-3}, A^{2}-2 A+I$.

$$
\begin{aligned}
& A^{2}=A A=\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]=\left[\begin{array}{cc}
4 & 0 \\
12 & 1
\end{array}\right] \\
& A^{3}=A^{2} A=\left[\begin{array}{cc}
4 & 0 \\
12 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]=\left[\begin{array}{cc}
8 & 0 \\
28 & 1
\end{array}\right]
\end{aligned}
$$

Example: Let A be the matrix

$$
\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right] .
$$

Compute $A^{3}, A^{-3}, A^{2}-2 A+I$.

$$
\begin{aligned}
A^{2} & =A A=\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]=\left[\begin{array}{cc}
4 & 0 \\
12 & 1
\end{array}\right] \\
A^{3} & =A^{2} A=\left[\begin{array}{cc}
4 & 0 \\
12 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]=\left[\begin{array}{cc}
8 & 0 \\
28 & 1
\end{array}\right] \\
A^{-3} & =\left(A^{3}\right)
\end{aligned}
$$

Example: Let A be the matrix

$$
\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]
$$

Compute $A^{3}, A^{-3}, A^{2}-2 A+I$.

$$
\begin{aligned}
A^{2} & =A A=\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]=\left[\begin{array}{cc}
4 & 0 \\
12 & 1
\end{array}\right] \\
A^{3} & =A^{2} A=\left[\begin{array}{cc}
4 & 0 \\
12 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]=\left[\begin{array}{cc}
8 & 0 \\
28 & 1
\end{array}\right] \\
A^{-3} & =\left(A^{3}\right)^{-1}
\end{aligned}
$$

Example: Let A be the matrix

$$
\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]
$$

Compute $A^{3}, A^{-3}, A^{2}-2 A+I$.

$$
\begin{aligned}
A^{2} & =A A=\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]=\left[\begin{array}{cc}
4 & 0 \\
12 & 1
\end{array}\right] \\
A^{3} & =A^{2} A=\left[\begin{array}{cc}
4 & 0 \\
12 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]=\left[\begin{array}{cc}
8 & 0 \\
28 & 1
\end{array}\right] \\
A^{-3} & =\left(A^{3}\right)^{-1}=\frac{1}{8}\left[\begin{array}{cc}
1 & 0 \\
-28 & 8
\end{array}\right]
\end{aligned}
$$

Example: Let A be the matrix

$$
\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]
$$

Compute $A^{3}, A^{-3}, A^{2}-2 A+I$.

$$
\begin{aligned}
A^{2} & =A A=\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]=\left[\begin{array}{cc}
4 & 0 \\
12 & 1
\end{array}\right] \\
A^{3} & =A^{2} A=\left[\begin{array}{cc}
4 & 0 \\
12 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]=\left[\begin{array}{cc}
8 & 0 \\
28 & 1
\end{array}\right] \\
A^{-3} & =\left(A^{3}\right)^{-1}=\frac{1}{8}\left[\begin{array}{cc}
1 & 0 \\
-28 & 8
\end{array}\right] \\
A^{2}-2 A+I & =\left[\begin{array}{ll}
4 & 0
\end{array}\right]=\left[\begin{array}{cc}
1 & 0
\end{array}\right]
\end{aligned}
$$

Example: Let A be the matrix

$$
\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]
$$

Compute $A^{3}, A^{-3}, A^{2}-2 A+I$.

$$
\begin{aligned}
A^{2} & =A A=\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]=\left[\begin{array}{cc}
4 & 0 \\
12 & 1
\end{array}\right] \\
A^{3} & =A^{2} A=\left[\begin{array}{cc}
4 & 0 \\
12 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]=\left[\begin{array}{cc}
8 & 0 \\
28 & 1
\end{array}\right] \\
A^{-3} & =\left(A^{3}\right)^{-1}=\frac{1}{8}\left[\begin{array}{cc}
1 & 0 \\
-28 & 8
\end{array}\right] \\
A^{2}-2 A+I & =\left[\begin{array}{cc}
4 & 0 \\
12 & 1
\end{array}\right]-\left[\begin{array}{cc}
4 & 0 \\
8 & 2
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{l}
1 \\
4
\end{array}\right.
\end{aligned}
$$

Example: Let A be the matrix

$$
\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]
$$

Compute $A^{3}, A^{-3}, A^{2}-2 A+I$.

$$
\begin{aligned}
A^{2} & =A A=\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]=\left[\begin{array}{cc}
4 & 0 \\
12 & 1
\end{array}\right] \\
A^{3} & =A^{2} A=\left[\begin{array}{cc}
4 & 0 \\
12 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]=\left[\begin{array}{cc}
8 & 0 \\
28 & 1
\end{array}\right] \\
A^{-3} & =\left(A^{3}\right)^{-1}=\frac{1}{8}\left[\begin{array}{cc}
1 & 0 \\
-28 & 8
\end{array}\right] \\
A^{2}-2 A+I & =\left[\begin{array}{cc}
4 & 0 \\
12 & 1
\end{array}\right]-\left[\begin{array}{cc}
4 & 0 \\
8 & 2
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
4 & 0
\end{array}\right] .
\end{aligned}
$$

Elementary Matrix:

An $n \times n$ matrix is called elementary matrix if it can be obtained from $n \times n$ identity matrix by performing a single row operation.

Example:

Elementary Matrix:

An $n \times n$ matrix is called elementary matrix if it can be obtained from $n \times n$ identity matrix by performing a single row operation. Example:

$$
I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \xrightarrow{-\mathbf{3 R _ { 3 }}}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -3
\end{array}\right]=E_{1}
$$

Elementary Matrix:

An $n \times n$ matrix is called elementary matrix if it can be obtained from $n \times n$ identity matrix by performing a single row operation. Example:

$$
\begin{gathered}
I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \xrightarrow{-\mathbf{3 R}_{3}}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -3
\end{array}\right]=E_{1} \\
I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \xrightarrow{-\mathbf{2 R}_{\mathbf{3}}+\mathbf{R}_{\mathbf{2}}}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & -2
\end{array}\right]=E_{2} \\
I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \xrightarrow{\mathrm{R}_{1} \longleftrightarrow \mathrm{R}_{3}}\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]=E_{3}
\end{gathered}
$$

Elementary Matrix:

An $n \times n$ matrix is called elementary matrix if it can be obtained from $n \times n$ identity matrix by performing a single row operation.
Example:

$$
\begin{gathered}
I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \xrightarrow{-\mathbf{3 R}_{3}}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -3
\end{array}\right]=E_{1} \\
I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \xrightarrow{-\mathbf{2 R}_{3}+\mathbf{R}_{2}}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & -2
\end{array}\right]=E_{2} \\
I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \xrightarrow{\mathbf{R}_{\mathbf{1}} \longleftrightarrow \mathbf{R}_{3}}\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]=E_{3}
\end{gathered}
$$

Note: When A is multiplied from the left by elementary matrix E, the effect is same as to perform an elementary row operation on A. Let A be a 3×4 matrix,

$$
A=\left[\begin{array}{cccc}
1 & 0 & 2 & 3 \\
2 & -1 & 3 & 6 \\
1 & 4 & 4 & 0
\end{array}\right]
$$

and E be 3×3 elementary matrix obtained by row operation $3 R_{1}+R_{3}$ from an identity matrix

Note: When A is multiplied from the left by elementary matrix E, the effect is same as to perform an elementary row operation on A. Let A be a 3×4 matrix,

$$
A=\left[\begin{array}{cccc}
1 & 0 & 2 & 3 \\
2 & -1 & 3 & 6 \\
1 & 4 & 4 & 0
\end{array}\right]
$$

and E be 3×3 elementary matrix obtained by row operation $3 R_{1}+R_{3}$ from an identity matrix

$$
\begin{gathered}
E=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{array}\right] \\
E A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 2 & 3 \\
2 & -1 & 3 & 6 \\
1 & 4 & 4 & 0
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 2 & 3 \\
2 & -1 & 3 & 6 \\
4 & 4 & 10 & 9
\end{array}\right], \mathbf{3} \mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{3}}
\end{gathered}
$$

Method for finding inverse of a Matrix

To find an inverse row of matrix A, we perform a sequence of elementary row operations that reduce.

$$
[A \mid I] \text { to }\left[I \mid A^{-1}\right]
$$

Example 1:

Find inverse matrix $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 7\end{array}\right]$ by using Elementary matrix method. solution:

Method for finding inverse of a Matrix

To find an inverse row of matrix A, we perform a sequence of elementary row operations that reduce.

$$
[A \mid I] \text { to }\left[I \mid A^{-1}\right]
$$

Example 1:

Find inverse matrix $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 7\end{array}\right]$ by using Elementary matrix method. solution:

$$
[A \mid I]=\left[\begin{array}{ll|ll}
1 & 4 & 1 & 0 \\
2 & 7 & 0 & 1
\end{array}\right]
$$

Method for finding inverse of a Matrix

To find an inverse row of matrix A, we perform a sequence of elementary row operations that reduce.

$$
[A \mid I] \text { to }\left[I \mid A^{-1}\right]
$$

Example 1:

Find inverse matrix $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 7\end{array}\right]$ by using Elementary matrix method. solution:

$$
[A \mid I]=\left[\begin{array}{ll|ll}
1 & 4 & 1 & 0 \\
2 & 7 & 0 & 1
\end{array}\right] \xrightarrow{-\mathbf{2} \mathbf{R}_{1}+\mathbf{R}_{2}}
$$

Method for finding inverse of a Matrix

To find an inverse row of matrix A, we perform a sequence of elementary row operations that reduce.

$$
[A \mid I] \text { to }\left[I \mid A^{-1}\right]
$$

Example 1:

Find inverse matrix $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 7\end{array}\right]$ by using Elementary matrix method. solution:

$$
[A \mid I]=\left[\begin{array}{ll|ll}
1 & 4 & 1 & 0 \\
2 & 7 & 0 & 1
\end{array}\right] \xrightarrow{-\mathbf{2} \mathbf{R}_{1}+\mathbf{R}_{2}}\left[\begin{array}{cc|cc}
1 & 4 & 1 & 0 \\
0 & -1 & -2 & 1
\end{array}\right]
$$

Method for finding inverse of a Matrix

To find an inverse row of matrix A, we perform a sequence of elementary row operations that reduce.

$$
[A \mid I] \text { to }\left[I \mid A^{-1}\right]
$$

Example 1:

Find inverse matrix $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 7\end{array}\right]$ by using Elementary matrix method. solution:

$$
[A \mid I]=\left[\begin{array}{ll|ll}
1 & 4 & 1 & 0 \\
2 & 7 & 0 & 1
\end{array}\right] \xrightarrow{-\mathbf{2} \mathbf{R}_{1}+\mathbf{R}_{2}}\left[\begin{array}{cc|cc}
1 & 4 & 1 & 0 \\
0 & -1 & -2 & 1
\end{array}\right] \xrightarrow{-\mathbf{R}_{2}}
$$

Method for finding inverse of a Matrix

To find an inverse row of matrix A, we perform a sequence of elementary row operations that reduce.

$$
[A \mid I] \text { to }\left[I \mid A^{-1}\right]
$$

Example 1:

Find inverse matrix $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 7\end{array}\right]$ by using Elementary matrix method. solution:

$$
[A \mid I]=\left[\begin{array}{ll|ll}
1 & 4 & 1 & 0 \\
2 & 7 & 0 & 1
\end{array}\right] \xrightarrow{-\mathbf{2} \mathbf{R}_{1}+\mathbf{R}_{2}}\left[\begin{array}{cc|cc}
1 & 4 & 1 & 0 \\
0 & -1 & -2 & 1
\end{array}\right] \xrightarrow{-\mathbf{R}_{2}}\left[\begin{array}{cc|cc}
1 & 4 & 1 & 0 \\
0 & 1 & 2 & -1
\end{array}\right]
$$

Method for finding inverse of a Matrix

To find an inverse row of matrix A, we perform a sequence of elementary row operations that reduce.

$$
[A \mid I] \text { to }\left[I \mid A^{-1}\right]
$$

Example 1:

Find inverse matrix $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 7\end{array}\right]$ by using Elementary matrix method. solution:

$$
\begin{aligned}
& {[A \mid I]=\left[\begin{array}{ll|ll}
1 & 4 & 1 & 0 \\
2 & 7 & 0 & 1
\end{array}\right] \xrightarrow{-\mathbf{2} \mathbf{R}_{1}+\mathbf{R}_{2}}\left[\begin{array}{cc|cc}
1 & 4 & 1 & 0 \\
0 & -1 & -2 & 1
\end{array}\right] \xrightarrow{-\mathbf{R}_{2}}\left[\begin{array}{cc|cc}
1 & 4 & 1 & 0 \\
0 & 1 & 2 & -1
\end{array}\right] } \\
& \xrightarrow{-4 \mathbf{R}_{2}+\mathbf{R}_{1}}\left[\begin{array}{ll}
1 & -7 \\
\hline
\end{array}\right]
\end{aligned}
$$

Method for finding inverse of a Matrix

To find an inverse row of matrix A, we perform a sequence of elementary row operations that reduce.

$$
[A \mid I] \text { to }\left[I \mid A^{-1}\right]
$$

Example 1:

Find inverse matrix $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 7\end{array}\right]$ by using Elementary matrix method. solution:

$$
\begin{aligned}
& {[A \mid I]=\left[\begin{array}{ll|ll}
1 & 4 & 1 & 0 \\
2 & 7 & 0 & 1
\end{array}\right] \xrightarrow{-\mathbf{2} \mathbf{R}_{1}+\mathbf{R}_{2}}\left[\begin{array}{cc|cc}
1 & 4 & 1 & 0 \\
0 & -1 & -2 & 1
\end{array}\right] \xrightarrow{-\mathbf{R}_{2}}\left[\begin{array}{cc|cc}
1 & 4 & 1 & 0 \\
0 & 1 & 2 & -1
\end{array}\right] } \\
& \xrightarrow{-4 \mathbf{R}_{2}+\mathbf{R}_{1}}\left[\begin{array}{cc|cc}
1 & 0 & -7 & 4 \\
0 & 1 & 2 & -1
\end{array}\right]=\left[I \mid A^{-1}\right]
\end{aligned}
$$

Method for finding inverse of a Matrix

To find an inverse row of matrix A, we perform a sequence of elementary row operations that reduce.

$$
[A \mid I] \text { to }\left[I \mid A^{-1}\right]
$$

Example 1:

Find inverse matrix $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 7\end{array}\right]$ by using Elementary matrix method. solution:

$$
\begin{gathered}
{[A \mid I]=\left[\begin{array}{ll|ll}
1 & 4 & 1 & 0 \\
2 & 7 & 0 & 1
\end{array}\right] \xrightarrow{-\mathbf{2} \mathbf{R}_{1}+\mathbf{R}_{2}}\left[\begin{array}{cc|cc}
1 & 4 & 1 & 0 \\
0 & -1 & -2 & 1
\end{array}\right] \xrightarrow{-\mathbf{R}_{2}}\left[\begin{array}{cc|cc}
1 & 4 & 1 & 0 \\
0 & 1 & 2 & -1
\end{array}\right]} \\
\xrightarrow{-4 \mathbf{R}_{2}+\mathbf{R}_{1}}\left[\begin{array}{cc|cc}
1 & 0 & -7 & 4 \\
0 & 1 & 2 & -1
\end{array}\right]=\left[I \mid A^{-1}\right] \\
A^{-1}=\left[\begin{array}{cc}
-7 & 4 \\
2 & -1
\end{array}\right]
\end{gathered}
$$

Example 2:

Find inverse matrix $A=\left[\begin{array}{ccc}3 & 4 & -1 \\ 1 & 0 & 3 \\ 2 & 5 & -4\end{array}\right]$ by using Elementary matrix method. solution:

Example 2:

Find inverse matrix $A=\left[\begin{array}{ccc}3 & 4 & -1 \\ 1 & 0 & 3 \\ 2 & 5 & -4\end{array}\right]$ by using Elementary matrix method. solution:

$$
[A \mid I]=\left[\begin{array}{ccc|ccc}
3 & 4 & -1 & 1 & 0 & 0 \\
1 & 0 & 3 & 0 & 1 & 0 \\
2 & 5 & -4 & 0 & 0 & 1
\end{array}\right]
$$

Example 2:

Find inverse matrix $A=\left[\begin{array}{ccc}3 & 4 & -1 \\ 1 & 0 & 3 \\ 2 & 5 & -4\end{array}\right]$ by using Elementary matrix method. solution:

$$
[A \mid I]=\left[\begin{array}{ccc|ccc}
3 & 4 & -1 & 1 & 0 & 0 \\
1 & 0 & 3 & 0 & 1 & 0 \\
2 & 5 & -4 & 0 & 0 & 1
\end{array}\right] \xrightarrow{\mathbf{R}_{1} \longleftrightarrow \mathbf{R}_{2}}
$$

Example 2:

Find inverse matrix $A=\left[\begin{array}{ccc}3 & 4 & -1 \\ 1 & 0 & 3 \\ 2 & 5 & -4\end{array}\right]$ by using Elementary matrix method.

solution:

$$
[A \mid I]=\left[\begin{array}{ccc|ccc}
3 & 4 & -1 & 1 & 0 & 0 \\
1 & 0 & 3 & 0 & 1 & 0 \\
2 & 5 & -4 & 0 & 0 & 1
\end{array}\right] \xrightarrow{\mathbf{R}_{\mathbf{1}} \longleftrightarrow \mathbf{R}_{\mathbf{2}}}\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & 0 & 1 & 0 \\
3 & 4 & -1 & 1 & 0 & 0 \\
2 & 5 & -4 & 0 & 0 & 1
\end{array}\right]
$$

Example 2:

Find inverse matrix $A=\left[\begin{array}{ccc}3 & 4 & -1 \\ 1 & 0 & 3 \\ 2 & 5 & -4\end{array}\right]$ by using Elementary matrix method.

solution:

$$
\begin{aligned}
& {[A \mid I]=\left[\begin{array}{ccc|ccc}
3 & 4 & -1 & 1 & 0 & 0 \\
1 & 0 & 3 & 0 & 1 & 0 \\
2 & 5 & -4 & 0 & 0 & 1
\end{array}\right] \xrightarrow{\mathbf{R}_{\mathbf{1}} \longleftrightarrow \mathbf{R}_{\mathbf{2}}}\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & 0 & 1 & 0 \\
3 & 4 & -1 & 1 & 0 & 0 \\
2 & 5 & -4 & 0 & 0 & 1
\end{array}\right]} \\
& \xrightarrow{-3 R_{1}+R_{2},-2 R_{1}+R_{3}}
\end{aligned}
$$

Example 2:

Find inverse matrix $A=\left[\begin{array}{ccc}3 & 4 & -1 \\ 1 & 0 & 3 \\ 2 & 5 & -4\end{array}\right]$ by using Elementary matrix method.

solution:

$$
\begin{aligned}
{[A \mid I]=} & {\left[\begin{array}{ccc|ccc}
3 & 4 & -1 & 1 & 0 & 0 \\
1 & 0 & 3 & 0 & 1 & 0 \\
2 & 5 & -4 & 0 & 0 & 1
\end{array}\right] \xrightarrow{\mathbf{R}_{\mathbf{1}} \longleftrightarrow \mathbf{R}_{\mathbf{2}}}\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & 0 & 1 & 0 \\
3 & 4 & -1 & 1 & 0 & 0 \\
2 & 5 & -4 & 0 & 0 & 1
\end{array}\right] } \\
& \xrightarrow{-\mathbf{3} \mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}},-\mathbf{2} \mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{3}}}\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 4 & -10 & 1 & -3 & 0 \\
0 & 5 & -10 & 0 & -2 & 1
\end{array}\right]
\end{aligned}
$$

Example 2:

Find inverse matrix $A=\left[\begin{array}{ccc}3 & 4 & -1 \\ 1 & 0 & 3 \\ 2 & 5 & -4\end{array}\right]$ by using Elementary matrix method.

solution:

$$
\begin{aligned}
{[A \mid I]=} & {\left[\begin{array}{ccc|ccc}
3 & 4 & -1 & 1 & 0 & 0 \\
1 & 0 & 3 & 0 & 1 & 0 \\
2 & 5 & -4 & 0 & 0 & 1
\end{array}\right] \xrightarrow{\mathbf{R}_{\mathbf{1}} \longleftrightarrow \mathbf{R}_{\mathbf{2}}}\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & 0 & 1 & 0 \\
3 & 4 & -1 & 1 & 0 & 0 \\
2 & 5 & -4 & 0 & 0 & 1
\end{array}\right] } \\
& \xrightarrow{-\mathbf{3} \mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}},-\mathbf{2} \mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{3}}}\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 4 & -10 & 1 & -3 & 0 \\
0 & 5 & -10 & 0 & -2 & 1
\end{array}\right] \\
& \xrightarrow{-\mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{3}}}\left[\begin{array}{cc|ccc}
1 & & 0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Example 2:

Find inverse matrix $A=\left[\begin{array}{ccc}3 & 4 & -1 \\ 1 & 0 & 3 \\ 2 & 5 & -4\end{array}\right]$ by using Elementary matrix method.

solution:

$$
\begin{aligned}
{[A \mid I]=} & {\left[\begin{array}{ccc|ccc}
3 & 4 & -1 & 1 & 0 & 0 \\
1 & 0 & 3 & 0 & 1 & 0 \\
2 & 5 & -4 & 0 & 0 & 1
\end{array}\right] \xrightarrow{\mathbf{R}_{\mathbf{1}} \longleftrightarrow \mathbf{R}_{\mathbf{2}}}\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & 0 & 1 & 0 \\
3 & 4 & -1 & 1 & 0 & 0 \\
2 & 5 & -4 & 0 & 0 & 1
\end{array}\right] } \\
& \xrightarrow{-\mathbf{3} \mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2},-\mathbf{2}} \mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{3}}}\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 4 & -10 & 1 & -3 & 0 \\
0 & 5 & -10 & 0 & -2 & 1
\end{array}\right] \\
& \xrightarrow{-\mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{3}}}\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 4 & -10 & 1 & -3 & 0 \\
0 & 1 & 0 & -1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

$$
\xrightarrow{\mathbf{R}_{2} \longleftrightarrow \mathbf{R}_{3}, \frac{-4 \mathbf{R}_{3}+\mathbf{R}_{\mathbf{2}}}{-10}}
$$

$$
\xrightarrow{\mathbf{R}_{2} \longleftrightarrow \mathbf{R}_{3} \xrightarrow{-4 \mathbf{R}_{3}+\mathbf{R}_{2}}-10}\left[\begin{array}{lll|ccc}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 1 & 0 & -1 & 1 & 1 \\
0 & 0 & 1 & -1 / 2 & 7 / 10 & 2 / 5
\end{array}\right]=\left[I \mid A^{-1}\right]
$$

Example 3:

$x_{1}+3 x_{2}+x_{3}=4$
$2 x_{1}+2 x_{2}+x_{3}=-1$
$2 x_{1}+3 x_{2}+x_{3}=3$

solution:

Example 3:

$x_{1}+3 x_{2}+x_{3}=4$
$2 x_{1}+2 x_{2}+x_{3}=-1$
$2 x_{1}+3 x_{2}+x_{3}=3$

$$
\left[\begin{array}{lll}
1 & 3 & 1 \\
2 & 2 & 1 \\
2 & 3 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
4 \\
-1 \\
3
\end{array}\right]
$$

solution:

Example 3:

$x_{1}+3 x_{2}+x_{3}=4$
$2 x_{1}+2 x_{2}+x_{3}=-1$
$2 x_{1}+3 x_{2}+x_{3}=3$

$$
\left[\begin{array}{lll}
1 & 3 & 1 \\
2 & 2 & 1 \\
2 & 3 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
4 \\
-1 \\
3
\end{array}\right]
$$

solution:

$$
[A \mid I]=\left[\begin{array}{lll|lll}
1 & 3 & 1 & 1 & 0 & 0 \\
2 & 2 & 1 & 0 & 1 & 0 \\
2 & 3 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Example 3:

$x_{1}+3 x_{2}+x_{3}=4$
$2 x_{1}+2 x_{2}+x_{3}=-1$
$2 x_{1}+3 x_{2}+x_{3}=3$

$$
\left[\begin{array}{lll}
1 & 3 & 1 \\
2 & 2 & 1 \\
2 & 3 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
4 \\
-1 \\
3
\end{array}\right]
$$

solution:

$$
[A \mid I]=\left[\begin{array}{lll|lll}
1 & 3 & 1 & 1 & 0 & 0 \\
2 & 2 & 1 & 0 & 1 & 0 \\
2 & 3 & 1 & 0 & 0 & 1
\end{array}\right] \xrightarrow{\mathbf{R}_{\mathbf{2}}-\mathbf{2} \mathbf{R}_{\mathbf{1}}, \mathbf{R}_{\mathbf{3}}-\mathbf{2} \mathbf{R}_{\mathbf{1}}}
$$

Example 3:

$x_{1}+3 x_{2}+x_{3}=4$
$2 x_{1}+2 x_{2}+x_{3}=-1$
$2 x_{1}+3 x_{2}+x_{3}=3$

$$
\left[\begin{array}{lll}
1 & 3 & 1 \\
2 & 2 & 1 \\
2 & 3 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
4 \\
-1 \\
3
\end{array}\right]
$$

solution:

$$
[A \mid I]=\left[\begin{array}{lll|lll}
1 & 3 & 1 & 1 & 0 & 0 \\
2 & 2 & 1 & 0 & 1 & 0 \\
2 & 3 & 1 & 0 & 0 & 1
\end{array}\right] \xrightarrow{\mathbf{R}_{\mathbf{2}}-\mathbf{2} \mathbf{R}_{\mathbf{1}}, \mathbf{R}_{\mathbf{3}}-\mathbf{2} \mathbf{R}_{\mathbf{1}}}\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & 1 & 0 & 0 \\
0 & -4 & -1 & -2 & 1 & 0 \\
0 & -3 & -1 & -2 & 0 & 1
\end{array}\right]
$$

Example 3:

$x_{1}+3 x_{2}+x_{3}=4$
$2 x_{1}+2 x_{2}+x_{3}=-1$
$2 x_{1}+3 x_{2}+x_{3}=3$

$$
\left[\begin{array}{lll}
1 & 3 & 1 \\
2 & 2 & 1 \\
2 & 3 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
4 \\
-1 \\
3
\end{array}\right]
$$

solution:

$$
\begin{gathered}
{[A \mid I]=\left[\begin{array}{ccc|ccc}
1 & 3 & 1 & 1 & 0 & 0 \\
2 & 2 & 1 & 0 & 1 & 0 \\
2 & 3 & 1 & 0 & 0 & 1
\end{array}\right] \xrightarrow{\mathbf{R}_{\mathbf{2}}-\mathbf{2} \mathbf{R}_{\mathbf{1}}, \mathbf{R}_{\mathbf{3}}-\mathbf{2} \mathbf{R}_{\mathbf{1}}}\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & 1 & 0 & 0 \\
0 & -4 & -1 & -2 & 1 & 0 \\
0 & -3 & -1 & -2 & 0 & 1
\end{array}\right]} \\
\\
\xrightarrow{\mathbf{4} \mathbf{R}_{\mathbf{3}}-\mathbf{3} \mathbf{R}_{\mathbf{2}}}\left[\begin{array}{cc}
1
\end{array}\right.
\end{gathered}
$$

Example 3:

$x_{1}+3 x_{2}+x_{3}=4$
$2 x_{1}+2 x_{2}+x_{3}=-1$
$2 x_{1}+3 x_{2}+x_{3}=3$

$$
\left[\begin{array}{lll}
1 & 3 & 1 \\
2 & 2 & 1 \\
2 & 3 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
4 \\
-1 \\
3
\end{array}\right]
$$

solution:

$$
\begin{gathered}
{[A \mid I]=\left[\begin{array}{lll|lll}
1 & 3 & 1 & 1 & 0 & 0 \\
2 & 2 & 1 & 0 & 1 & 0 \\
2 & 3 & 1 & 0 & 0 & 1
\end{array}\right] \xrightarrow{\mathbf{R}_{\mathbf{2}}-\mathbf{2} \mathbf{R}_{\mathbf{1}}, \mathbf{R}_{\mathbf{3}}-\mathbf{2} \mathbf{R}_{\mathbf{1}}}\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & 1 & 0 & 0 \\
0 & -4 & -1 & -2 & 1 & 0 \\
0 & -3 & -1 & -2 & 0 & 1
\end{array}\right]} \\
\\
\xrightarrow{\mathbf{4} \mathbf{R}_{\mathbf{3}}-\mathbf{3} \mathbf{R}_{\mathbf{2}}}\left[\begin{array}{ccc|ccc}
1 & 3 & 1 & 1 & 0 & 0 \\
0 & -4 & -1 & -2 & 1 & 0 \\
0 & 0 & -1 & -2 & -3 & 4
\end{array}\right]
\end{gathered}
$$

Example 3:

$x_{1}+3 x_{2}+x_{3}=4$
$2 x_{1}+2 x_{2}+x_{3}=-1$
$2 x_{1}+3 x_{2}+x_{3}=3$

$$
\left[\begin{array}{lll}
1 & 3 & 1 \\
2 & 2 & 1 \\
2 & 3 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
4 \\
-1 \\
3
\end{array}\right]
$$

solution:

$$
\begin{gathered}
{[A \mid I]=\left[\begin{array}{lll|lll}
1 & 3 & 1 & 1 & 0 & 0 \\
2 & 2 & 1 & 0 & 1 & 0 \\
2 & 3 & 1 & 0 & 0 & 1
\end{array}\right] \xrightarrow{\mathbf{R}_{\mathbf{2}}-\mathbf{2} \mathbf{R}_{\mathbf{1}}, \mathbf{R}_{\mathbf{3}}-\mathbf{2} \mathbf{R}_{\mathbf{1}}}\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & 1 & 0 & 0 \\
0 & -4 & -1 & -2 & 1 & 0 \\
0 & -3 & -1 & -2 & 0 & 1
\end{array}\right]} \\
\\
\xrightarrow{\mathbf{4} \mathbf{R}_{\mathbf{3}}-\mathbf{3} \mathbf{R}_{\mathbf{2}}}\left[\begin{array}{ccc|ccc}
1 & 3 & 1 & 1 & 0 & 0 \\
0 & -4 & -1 & -2 & 1 & 0 \\
0 & 0 & -1 & -2 & -3 & 4
\end{array}\right]
\end{gathered}
$$

$$
\xrightarrow{\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{3}},-\mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{3}}}
$$

Example 3:

$x_{1}+3 x_{2}+x_{3}=4$
$2 x_{1}+2 x_{2}+x_{3}=-1$
$2 x_{1}+3 x_{2}+x_{3}=3$

$$
\left[\begin{array}{lll}
1 & 3 & 1 \\
2 & 2 & 1 \\
2 & 3 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
4 \\
-1 \\
3
\end{array}\right]
$$

solution:

$$
\begin{gathered}
{[A \mid I]=\left[\begin{array}{lll|lll}
1 & 3 & 1 & 1 & 0 & 0 \\
2 & 2 & 1 & 0 & 1 & 0 \\
2 & 3 & 1 & 0 & 0 & 1
\end{array}\right] \xrightarrow{\mathbf{R}_{\mathbf{2}}-\mathbf{2} \mathbf{R}_{\mathbf{1}}, \mathbf{R}_{\mathbf{3}}-\mathbf{2} \mathbf{R}_{\mathbf{1}}}\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & 1 & 0 & 0 \\
0 & -4 & -1 & -2 & 1 & 0 \\
0 & -3 & -1 & -2 & 0 & 1
\end{array}\right]} \\
\\
\xrightarrow{\mathbf{4} \mathbf{R}_{\mathbf{3}}-\mathbf{3} \mathbf{R}_{\mathbf{2}}}\left[\begin{array}{ccc|ccc}
1 & 3 & 1 & 1 & 0 & 0 \\
0 & -4 & -1 & -2 & 1 & 0 \\
0 & 0 & -1 & -2 & -3 & 4
\end{array}\right] \\
\\
\xrightarrow{\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{3}},-\mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{3}}}\left[\begin{array}{ccc|ccc}
1 & 3 & 0 & -1 & -3 & 4 \\
0 & 4 & 0 & 0 & -4 & 4 \\
0 & 0 & -1 & -2 & -3 & 4
\end{array}\right]
\end{gathered}
$$

Solution is $x_{1}=-6 x_{2}=4 x_{3}=-7$

$$
\xrightarrow{\frac{1}{4} \mathbf{R}_{2},-\mathbf{R}_{3}}\left[\begin{array}{ccc|ccc}
1 & 3 & 0 & -1 & -3 & 4 \\
0 & 1 & 0 & 0 & -1 & 1 \\
0 & 0 & 1 & 2 & 3 & -4
\end{array}\right]
$$

$\xrightarrow{\frac{1}{4} \mathbf{R}_{\mathbf{2}},-\mathbf{R}_{\mathbf{3}}}\left[\begin{array}{ccc|ccc}1 & 3 & 0 & -1 & -3 & 4 \\ 0 & 1 & 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & 2 & 3 & -4\end{array}\right]$

$$
\begin{gathered}
\xrightarrow{\frac{1}{4} \mathbf{R}_{2},-\mathbf{R}_{3}}\left[\begin{array}{ccc|ccc}
1 & 3 & 0 & -1 & -3 & 4 \\
0 & 1 & 0 & 0 & -1 & 1 \\
0 & 0 & 1 & 2 & 3 & -4
\end{array}\right] \\
\xrightarrow{-\mathbf{3} \mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{1}}}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & -1 & 0 & 1 \\
0 & 1 & 0 & 0 & -1 & 1 \\
0 & 0 & 1 & 2 & 3 & -4
\end{array}\right]=\left[I \mid A^{-1}\right]
\end{gathered}
$$

$$
\begin{gathered}
\xrightarrow{\frac{1}{4} \mathbf{R}_{\mathbf{2}},-\mathbf{R}_{\mathbf{3}}}\left[\begin{array}{ccc|ccc}
1 & 3 & 0 & -1 & -3 & 4 \\
0 & 1 & 0 & 0 & -1 & 1 \\
0 & 0 & 1 & 2 & 3 & -4
\end{array}\right] \\
\xrightarrow{-\mathbf{3 R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{1}}}\left[\begin{array}{lll|ccc}
1 & 0 & 0 & -1 & 0 & 1 \\
0 & 1 & 0 & 0 & -1 & 1 \\
0 & 0 & 1 & 2 & 3 & -4
\end{array}\right]=\left[I \mid A^{-1}\right] \\
A^{-1}\left[\begin{array}{cccc}
-1 & 0 & 1 \\
0 & -1 & 1 \\
2 & 3 & -4
\end{array}\right] \\
X=A^{-1} B=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -1 & 1 \\
2 & 3 & -4
\end{array}\right]\left[\begin{array}{c}
4 \\
-1 \\
3
\end{array}\right]=\left[\begin{array}{l}
-1 \\
4 \\
-7
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
\xrightarrow{\frac{1}{4} \mathbf{R}_{\mathbf{2}},-\mathbf{R}_{\mathbf{3}}}\left[\begin{array}{ccc|ccc}
1 & 3 & 0 & -1 & -3 & 4 \\
0 & 1 & 0 & 0 & -1 & 1 \\
0 & 0 & 1 & 2 & 3 & -4
\end{array}\right] \\
\xrightarrow{-\mathbf{3} \mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{1}}}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & -1 & 0 & 1 \\
0 & 1 & 0 & 0 & -1 & 1 \\
0 & 0 & 1 & 2 & 3 & -4
\end{array}\right]=\left[I \mid A^{-1}\right] \\
A^{-1}\left[\begin{array}{cccc}
-1 & 0 & 1 \\
0 & -1 & 1 \\
2 & 3 & -4
\end{array}\right] \\
X=A^{-1} B=
\end{gathered}
$$

$$
\begin{gathered}
\xrightarrow{\frac{1}{4} \mathbf{R}_{\mathbf{2},-} \mathbf{R}_{3}}\left[\begin{array}{ccc|ccc}
1 & 3 & 0 & -1 & -3 & 4 \\
0 & 1 & 0 & 0 & -1 & 1 \\
0 & 0 & 1 & 2 & 3 & -4
\end{array}\right] \\
\xrightarrow{-\mathbf{3} \mathbf{R}_{\mathbf{2}}+\mathbf{R}_{1}}\left[\begin{array}{lll|lll}
1 & 0 & 0 & -1 & 0 & 1 \\
0 & 1 & 0 & 0 & -1 & 1 \\
0 & 0 & 1 & 2 & 3 & -4
\end{array}\right]=\left[I \mid A^{-1}\right] \\
A^{-1}\left[\begin{array}{cccc}
-1 & 0 & 1 \\
0 & -1 & 1 \\
2 & 3 & -4
\end{array}\right] \\
X=A^{-1} B=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -1 & 1 \\
2 & 3 & -4
\end{array}\right]\left[\begin{array}{c}
4 \\
-1 \\
3
\end{array}\right]=\left[\begin{array}{c}
-1 \\
4 \\
-7
\end{array}\right]
\end{gathered}
$$

Solution is

$$
\begin{gathered}
\xrightarrow{\frac{1}{4} \mathbf{R}_{\mathbf{2}},-\mathbf{R}_{\mathbf{3}}}\left[\begin{array}{ccc|ccc}
1 & 3 & 0 & -1 & -3 & 4 \\
0 & 1 & 0 & 0 & -1 & 1 \\
0 & 0 & 1 & 2 & 3 & -4
\end{array}\right] \\
\xrightarrow{-\mathbf{3} \mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{1}}}\left[\begin{array}{lll|lll}
1 & 0 & 0 & -1 & 0 & 1 \\
0 & 1 & 0 & 0 & -1 & 1 \\
0 & 0 & 1 & 2 & 3 & -4
\end{array}\right]=\left[I \mid A^{-1}\right] \\
A^{-1}\left[\begin{array}{cccc}
-1 & 0 & 1 \\
0 & -1 & 1 \\
2 & 3 & -4
\end{array}\right] \\
X=A^{-1} B=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -1 & 1 \\
2 & 3 & -4
\end{array}\right]\left[\begin{array}{c}
4 \\
-1 \\
3
\end{array}\right]=\left[\begin{array}{c}
-1 \\
4 \\
-7
\end{array}\right]
\end{gathered}
$$

Solution is $x_{1}=-6 x_{2}=4 x_{3}=-7$

