MATH107 Vectors and Matrices

Dr. Bandar Al-Mohsin

School of Mathematics, KSU

24/10/16

- A scalar is a real number or a quantity that has magnitude only.
 Examples: length, temperature, area, volume.
- A vector is a quantity that has magnitude and direction. Examples: Velocity, acceleration, force, momentum.

Note:

1- A vector is represented by directed line, for example, \overrightarrow{PQ} represents a vector with initial point P and terminal point Q.

- 2- A has coordinates (a_1, a_2) .
- 3- $\overrightarrow{0A}$ is the position vector, i.e. $a = \overrightarrow{0A}$.
- 4- $a = \langle a_1, a_2 \rangle$, a_1, a_2 are the components of vector a.
- 5- Magnitude of the vector \boldsymbol{a} is

$$\|\mathbf{a}\| = \sqrt{(a_1)^2 + (a_2)^2}.$$

6- If $A_1(a_1, b_1)$ and $A_2(a_2, b_2)$. We say (a_i, b_i) is a coordinate of A_i , where i = 1, 2. A vector a from A_1 to A_2 is

$$\mathbf{a} = \overrightarrow{A_1 A_2} = \langle a_2 - a_1, b_2 - b_1 \rangle \,.$$

Magnitude of the vector \boldsymbol{a} is

$$\|\boldsymbol{a}\| = \sqrt{(a_2 - a_1)^2 + (b_2 - b_1)^2}.$$

7- Let $a=\langle a_1,a_2
angle$ and $b=\langle b_1,b_2
angle$ be vectors in two dimension. Then

- Addition and Subtraction: $a \pm b = \langle a_1 \pm b_1, a_2 \pm b_2 \rangle$.
- Scalar multiplication: $ka = \langle ka_1, ka_2 \rangle$.
- Sequality: a = b if and only if $a_1 = b_1$ and $a_2 = b_2$.

Let \underline{a} be a vector. We define \underline{u} is the unit vector of \underline{a} by

$$u = \frac{1}{\|a\|}a.$$

Let \underline{a} be a vector. We define \underline{u} is the unit vector of \underline{a} by

$$u = \frac{1}{\|a\|}a.$$

Example: Let p(1,3), Q(2,5), W(1,1) be three points. Find: $a = \overrightarrow{PQ}$, $b = \overrightarrow{QW}$, $c = \overrightarrow{WP}$. Also, find 4a + 2b - 3c, ||a + 2b||. Find the unit vectors for a, b, c, a + 2b.

A vector *a* in 3-space is any ordered triple of real numbers

 $\boldsymbol{a} = \left\langle a_1, a_2, a_3 \right\rangle,$

where a_1, a_2 and a_3 are *the components* of the vector **a**.

Notes:

1- The position vector of a point P(x, y, z) is

$$\overrightarrow{OP} = \left\langle x,y,z\right\rangle.$$

2- Let $a = \langle a_1, a_2, a_3 \rangle$ and $b = \langle b_1, b_2, b_3 \rangle$ be vectors in 3-space. Then a $\pm b = \langle a_1 \pm b_1, a_2 \pm b_2, a_3 \pm b_3 \rangle$. k $a = \langle ka_1, ka_2, ka_3 \rangle$. a $b = \langle 0, 0, 0 \rangle$ is the zero vector. a $\|a\| = \sqrt{a_1^2 + a_2^2 + a_3^2}$. 3- If $\overrightarrow{OP_1}$ and $\overrightarrow{OP_2}$ are position vectors of points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ then the vector $\overrightarrow{P_1P_2}$ is $\overrightarrow{P_1P_2} = \overrightarrow{OP_2} - \overrightarrow{OP_1} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$. Example: Given the points $P_1(1, -2, 3)$ and $P_2(-3, 2, -1)$. Find the vector a in V_3 that corresponds to $\overrightarrow{P_1P_2}$ and b that corresponds to $\overrightarrow{P_2P_1}$. Example: If $a = \langle -1, 3, 0 \rangle$ and $b = \langle -3, -2, -5 \rangle$. Find 0 a + b and b - a.

2
$$3a - 4b$$
 and $-2a - 3b$.

$$\Im \|a\|, \|b\|, \|3a - 4b\|$$
 and $\|4a\|.$

- Find the unit vector that has same direction as a.
- Find the vector that has the same direction as a and third the magnitude of a.
- Find the vector that has the opposite direction of *a* and one-third the magnitude of *a*.

Note(1): If b = k.a, where k is scalar, then a and b are *parallel*. **Note(2):** Three points lie on the same line, if two vectors from three points, they

- (i) have same initial point;
- (ii) are parallel.

Example: Use vectors to determine whether the points lie on a straight line, the points are (1, -1, 5), (0, -1, 6) and (3, -1, 3).

Example: If $a = \langle -6, -3, 6 \rangle$, find the vector that has

- (i) the same direction of a and twice the magnitude of a.
- (ii) the opposite direction of a and one-third the magnitude of a.
- (i) the same direction of a and the magnitude 2.