# MATH107 Vectors and Matrices 

Dr. Bandar AI-Mohsin<br>School of Mathematics, KSU

24/10/16

## Definition

(1) A scalar is a real number or a quantity that has magnitude only. Examples: length, temperature, area, volume.
(2) A vector is a quantity that has magnitude and direction. Examples: Velocity, acceleration, force, momentum.

## Note:

1- A vector is represented by directed line, for example, $\overrightarrow{P Q}$ represents a vector with initial point $P$ and terminal point $Q$.
2- $A$ has coordinates $\left(a_{1}, a_{2}\right)$.
3- $\overrightarrow{0 A}$ is the position vector, i.e. $a=\overrightarrow{0 A}$.
4- $a=\left\langle a_{1}, a_{2}\right\rangle, a_{1}, a_{2}$ are the components of vector $a$.
5- Magnitude of the vector $a$ is

$$
\|a\|=\sqrt{\left(a_{1}\right)^{2}+\left(a_{2}\right)^{2}} .
$$

6- If $A_{1}\left(a_{1}, b_{1}\right)$ and $A_{2}\left(a_{2}, b_{2}\right)$. We say $\left(a_{i}, b_{i}\right)$ is a coordinate of $A_{i}$, where $i=1,2$. A vector $a$ from $A_{1}$ to $A_{2}$ is

$$
a=\overrightarrow{A_{1} A_{2}}=\left\langle a_{2}-a_{1}, b_{2}-b_{1}\right\rangle .
$$

Magnitude of the vector $a$ is

$$
\|a\|=\sqrt{\left(a_{2}-a_{1}\right)^{2}+\left(b_{2}-b_{1}\right)^{2}}
$$

7- Let $a=\left\langle a_{1}, a_{2}\right\rangle$ and $b=\left\langle b_{1}, b_{2}\right\rangle$ be vectors in two dimension. Then
(1) Addition and Subtraction: $a \pm b=\left\langle a_{1} \pm b_{1}, a_{2} \pm b_{2}\right\rangle$.
(2) scalar multiplication: $k a=\left\langle k a_{1}, k a_{2}\right\rangle$.
(3) Equality: $a=b$ if and only if $a_{1}=b_{1}$ and $a_{2}=b_{2}$.

## Definition

Let $a$ be a vector. We define $u$ is the unit vector of $a$ by

$$
u=\frac{1}{\|a\|} a .
$$

## Definition

Let $a$ be a vector. We define $u$ is the unit vector of $a$ by

$$
u=\frac{1}{\|a\|} a .
$$

Example: Let $p(1,3), Q(2,5), W(1,1)$ be three points. Find: $a=\overrightarrow{P Q}$, $b=\overrightarrow{Q W}, c=\overrightarrow{W P}$. Also, find $4 a+2 b-3 c,\|a+2 b\|$. Find the unit vectors for $a, b, c, a+2 b$.

## Definition

A vector a in 3-space is any ordered triple of real numbers

$$
a=\left\langle a_{1}, a_{2}, a_{3}\right\rangle
$$

where $a_{1}, a_{2}$ and $a_{3}$ are the components of the vector $a$.
Notes:
1- The position vector of a point $P(x, y, z)$ is

$$
\overrightarrow{O P}=\langle x, y, z\rangle
$$

2- Let $a=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $b=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$ be vectors in 3-space. Then
(1) $a \pm b=\left\langle a_{1} \pm b_{1}, a_{2} \pm b_{2}, a_{3} \pm b_{3}\right\rangle$.
(2) $k a=\left\langle k a_{1}, k a_{2}, k a_{3}\right\rangle$.
(3) $\mathbf{0}=\langle 0,0,0\rangle$ is the zero vector.
(a) $\|a\|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}$.

3- If $\overrightarrow{O P_{1}}$ and $\overrightarrow{O P_{2}}$ are position vectors of points $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ then the vector $\overrightarrow{P_{1} P_{2}}$ is
$\overrightarrow{P_{1} P_{2}}=\overrightarrow{0 P_{2}}-\overrightarrow{0 P_{1}}=\left\langle x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right\rangle$.
Example: Given the points $P_{1}(1,-2,3)$ and $P_{2}(-3,2,-1)$. Find the vector $a$ in $V_{3}$ that corresponds to $\overrightarrow{P_{1} P_{2}}$ and $b$ that corresponds to $\overrightarrow{P_{2} P 1}$.
Example: If $a=\langle-1,3,0\rangle$ and $b=\langle-3,-2,-5\rangle$. Find
(3) $a+b$ and $b-a$.
(2) $3 a-4 b$ and $-2 a-3 b$.
(3) $\|a\|,\|b\|,\|3 a-4 b\|$ and $\|4 a\|$.
( - Find the unit vector that has same direction as $a$.
( Find the vector that has the same direction as $a$ and third the magnitude of $a$.
( ( Find the vector that has the opposite direction of $a$ and one-third the magnitude of $a$.

Note(1): If $b=k . a$, where $k$ is scalar, then $a$ and $b$ are parallel. Note(2): Three points lie on the same line, if two vectors from three points, they
(i) have same initial point;
(ii) are parallel.

Example: Use vectors to determine whether the points lie on a straight line, the points are $(1,-1,5),(0,-1,6)$ and $(3,-1,3)$.

Example: If $a=\langle-6,-3,6\rangle$, find the vector that has
(i) the same direction of $a$ and twice the magnitude of $a$.
(ii) the opposite direction of $a$ and one-third the magnitude of $a$.
(i) the same direction of $a$ and the magnitude 2 .

