MATH107 Vectors and Matrices

Dr. Bandar Al-Mohsin

School of Mathematics, KSU

26/10/16

Definition 1

The dot product a.b of $a=< a_1,a_2,a_3>$ and $b=< b_1,b_2,b_3>$ is $a.b=a_1b_1+a_2b_2+a_3b_3.$

Properties of dot product

(1)
$$a.a = ||a||^2$$

(2) $a.b = b.a$ (commutative)
(3) $a.(b+c) = a.b+a.c$ (distributive)
(4) $(ma).b = m(a.b) = a.(mb)$
(5) $0.a = 0$
(6) $a.b = 0$ if $a = 0$ or $b = 0$ or $\theta = \frac{\pi}{2}$

Definition 2

The dot product of two vectors a and b is scalar $a.b = ||a|| ||b|| \cos \theta$, where θ is angle between the vectors such that $0 \le \theta \le \pi$. $\cos \theta = \frac{a.b}{||a|| ||b||} \Rightarrow \theta = \cos^{-1} \frac{a.b}{||a|| ||b||}$.

Notes

(1) If vector a and b are parallel, then b = ca. (2) If $a = \langle a_1, a_2, a_3 \rangle$ and $b = \langle b_1, b_2, b_3 \rangle$ are parallel, then $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$. (3) Two nonzero vectors a and b are orthogonal if and only if a.b = 0(4) i.j = j.i = 0, j.k = k.j = 0, k.i = i.k = 0

Example 1: Find the angle between a = i - 7j + 4k, b = 5i - k. **Example 2:** Show that a = 3i - 2j + k and b = 4i + 5j - 2k are orthogonal.

Component of a along b

Let a and b vectors in V_3 with $b\neq 0.$ The component of a along b is $Comp_b^a=\frac{a.b}{\|b\|}$

Projection of a on b

Vector projection of a onto b is $(Comp_b^a) \cdot \frac{b}{\|b\|} = (\frac{a.b}{\|b\|})(\frac{b}{\|b\|})$

Example 1: Let a = 2i + 3j - 4k and b = i + j + 2k. Find (1) $Comp_b^a$ (2) $Comp_a^b$ (3) $Proj_b^a$

Work done

The work done by a constant force \overrightarrow{PQ} as its point of application moves along the vector \overrightarrow{PR} is $\overrightarrow{PQ}.\overrightarrow{PR}$

Example 2: Find work done by constant force F = 2i + 4j + k if its point of application moves form P(1, 1, 3) to Q(4, 6, 2).

Direction angles/direction cosines

The direction angles of nonzero vector $a < a_1, a_2, a_3 >$ are the angles α, β and γ with the base vector i, j and k respectively. The cosine of these angles $\cos \alpha, \cos \beta$ and $\cos \gamma$ are called direction cosine of vector a defined as

$$\cos \alpha = \frac{a \cdot i}{\|a\| \|i\|} = \frac{a_1}{\|a\|},$$

$$\cos \beta = \frac{a \cdot j}{\|a\| \|j\|} = \frac{a_2}{\|a\|} \text{ and }$$

$$\cos \gamma = \frac{a \cdot k}{\|a\| \|k\|} = \frac{a_3}{\|a\|}.$$

Note $\cos \alpha^2 + \cos \beta^2 + \cos \gamma^2 = 1$. Example 1: Find the direction cosines and direction angles of the vector a = 2i + 3j + 4k and also show that $\cos \alpha^2 + \cos \beta^2 + \cos \gamma^2 = 1$.

Definition 1

The vector product
$$a \times b$$
 of $a = \langle a_1, a_2, a_3 \rangle$ and $b = \langle b_1, b_2, b_3 \rangle$ is
 $a \times b = \begin{vmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} i - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} j + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} i.$

Definition 2

The vector product of a and b is the vector

 $a \times b = (\|a\| \|b\| \sin \theta) \mathbf{n}$

where θ is the angle between the vectors such that $0 \le \theta \le \pi$ and **n** is a unit vector perpendicular to the plane of a and b with direction given by the right-hand rule.

Properties of vector product

(1)
$$a \times b = -(b \times a)$$

(2) $a \times (b + c) = (a \times b) + (a \times c)$
(3) $(a + b) \times c = (a \times c) + (b \times c)$ (distributive)
(4) $(ma) \times b = m(a \times b) = a \times (mb)$
(5) $(a \times b).c = a.(b \times c)$ (Triple scalar product)
(6) $a \times (b \times c) = (a.c)b - (a.b)c$ (Triple vector product)

Notes:

1- $a \times b$ is orthogonal to both a and b, i.e $(a \times b).a = 0$ or $(a \times b).b = 0$ 2- a and b are parallel if $a \times b = 0$.

2- *a* and *b* are parallel if $a \times b = 0$.

3- a and b are orthogonal if a.b = 0.

4- The magnitude of $a \times b$ equals the area of the parallelogram. It means that $||a \times b|| = ||a|| ||b|| \sin \theta$.

5- Area of triangle
$$=\frac{\|a \times b\|}{2}$$
.

Properties of i, j, k

(1)
$$i \times j = k$$
, $j \times k = i$ and $k \times i = j$
(2) $j \times i = -k$, $k \times j = -i$ and $i \times k = -j$
(3) $i \times i = j \times j = k \times k = 0$

Distance of a point R to line l

$$d = \frac{\|\overrightarrow{PQ} \times \overrightarrow{PR}\|}{\|\overrightarrow{PQ}\|}$$

Volume of a box

 $V = |(a \times b).c|.$