MATH107 Vectors and Matrices

Dr. Bandar AI-Mohsin
School of Mathematics, KSU

26/10/16

Definition 1

The dot product $a . b$ of $a=<a_{1}, a_{2}, a_{3}>$ and $b=<b_{1}, b_{2}, b_{3}>$ is $a . b=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$.

Properties of dot product

(1) $a . a=\|a\|^{2}$
(2) $a . b=b . a$ (commutative)
(3) $a .(b+c)=a . b+a . c$ (distributive)
(4) $(m a) . b=m(a . b)=a .(m b)$
(5) $0 . a=0$
(6) $a . b=0$ if $a=0$ or $b=0$ or $\theta=\frac{\pi}{2}$

Definition 2

The dot product of two vectors a and b is scalar $a . b=\|a\|\| \| \| \cos \theta$, where θ is angle between the vectors such that $0 \leqslant \theta \leqslant \pi$.
$\cos \theta=\frac{a \cdot b}{\|a\|\|b\|} \Rightarrow \theta=\cos ^{-1} \frac{a \cdot b}{\|a\|\|b\|}$.

Notes

(1) If vector a and b are parallel, then $b=c a$.
(2) If $a=<a_{1}, a_{2}, a_{3}>$ and $b=<b_{1}, b_{2}, b_{3}>$ are parallel, then $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\frac{a_{3}}{b_{3}}$.
(3) Two nonzero vectors a and b are orthogonal if and only if $a . b=0$
(4) $i . j=j . i=0, j . k=k . j=0, k . i=i . k=0$

Example 1: Find the angle between $a=i-7 j+4 k, b=5 i-k$. Example 2: Show that $a=3 i-2 j+k$ and $b=4 i+5 j-2 k$ are orthognal.

Component of a along b

Let a and b vectors in V_{3} with $b \neq 0$. The component of a along b is Comp $p_{b}^{a}=\frac{a . b}{\|b\|}$

Projection of a on b

Vector projection of a onto b is $\left(C o m p_{b}^{a}\right) \cdot \frac{b}{\|b\|}=\left(\frac{a . b}{\|b\|}\right)\left(\frac{b}{\|b\|}\right)$
Example 1: Let $a=2 i+3 j-4 k$ and $b=i+j+2 k$.
Find (1) $C o m p_{b}^{a}$ (2) $C o m p p_{a}^{b}$ (3) Proja $_{b}^{a}$

Work done

The work done by a constant force $\overrightarrow{P Q}$ as its point of application moves along the vector $\overrightarrow{P R}$ is $\overrightarrow{P Q} \cdot \overrightarrow{P R}$

Example 2: Find work done by constant force $F=2 i+4 j+k$ if its point of application moves form $P(1,1,3)$ to $Q(4,6,2)$.

Direction angles/direction cosines

The direction angles of nonzero vector $a<a_{1}, a_{2}, a_{3}>$ are the angles α, β and γ with the base vector i, j and k respectively.
The cosine of these angles $\cos \alpha, \cos \beta$ and $\cos \gamma$ are called direction cosine of vector a defined as
$\cos \alpha=\frac{a, i}{\|a\|\|i\|}=\frac{a_{1}}{\|a\|}$,
$\cos \beta=\frac{a \cdot j}{\|a\|\|j\|}=\frac{a_{2}}{\|a\|}$ and
$\cos \gamma=\frac{a \cdot k}{\|a\|\|k\|}=\frac{a_{3}}{\|a\|}$.
Note $\cos \alpha^{2}+\cos \beta^{2}+\cos \gamma^{2}=1$.
Example 1: Find the direction cosines and direction angles of the vector $a=2 i+3 j+4 k$ and also show that $\cos \alpha^{2}+\cos \beta^{2}+\cos \gamma^{2}=1$.

Definition 1

The vector product $a \times b$ of $a=<a_{1}, a_{2}, a_{3}>$ and $b=<b_{1}, b_{2}, b_{3}>$ is
$a \times b=\left|\begin{array}{ccc}i & j & k \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|=\left|\begin{array}{cc}a_{2} & a_{3} \\ b_{2} & b_{3}\end{array}\right| i-\left|\begin{array}{ll}a_{1} & a_{3} \\ b_{1} & b_{3}\end{array}\right| j+\left|\begin{array}{ll}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right| i$.

Definition 2

The vector product of a and b is the vector

$$
a \times b=(\|a\|\|b\| \sin \theta) \mathbf{n}
$$

where θ is the angle between the vectors such that $0 \leqslant \theta \leqslant \pi$ and \mathbf{n} is a unit vector perpendicular to the plane of a and b with direction given by the right-hand rule.

Properties of vector product

(1) $a \times b=-(b \times a)$
(2) $a \times(b+c)=(a \times b)+(a \times c)$
(3) $(a+b) \times c=(a \times c)+(b \times c)$ (distributive)
(4) $(m a) \times b=m(a \times b)=a \times(m b)$
(5) $(a \times b) . c=a .(b \times c)$ (Triple scalar product)
(6) $a \times(b \times c)=(a . c) b-(a . b) c$ (Triple vector product)

Notes:

1- $a \times b$ is orthogonal to both a and b, i.e $(a \times b) \cdot a=0$ or $(a \times b) \cdot b=0$
2- a and b are parallel if $a \times b=0$.
3- a and b are orthogonal if $a . b=0$.
4- The magnitude of $a \times b$ equals the area of the parallelogram. It means that $\|a \times b\|=\|a\|\|b\| \sin \theta$.
5- Area of triangle $=\frac{\|a \times b\|}{2}$.

Properties of i, j, k

(1) $i \times j=k, j \times k=i$ and $k \times i=j$
(2) $j \times i=-k, k \times j=-i$ and $i \times k=-j$
(3) $i \times i=j \times j=k \times k=0$

Distance of a point R to line l
$d=\frac{\|\overrightarrow{P Q} \times \overrightarrow{P R}\|}{\|\overrightarrow{P Q}\|}$.
Volume of a box
$V=|(a \times b) \cdot c|$.

