Vector valued functions Limits and derivatives Velocity and Acceleration Inetgration of vector valued function Curvature Cylindrical and Spherical coordina

MATH107 Vectors and Matrices

Dr. Bandar Al-Mohsin

School of Mathematics, KSU

20/11/16

Vector valued functions

Let D be a set of real numbers $D \in \mathbb{R}$. A vector-valued functions r with domain D is a correspondence that assigns to each number t in D exactly one vector r(t) in V_3 such as

$$r(t) = f(t)i + g(t)j + h(t)k \qquad t \in D$$

where $f,g \mbox{ and } h$ are real valued functions called components of vector $\boldsymbol{r}(t).$

Note: Domain of r(t) is common domain of its components.

Find the domain of r(t)(1) $r(t) = (3 + 2t)i + \sqrt{1 - t}j + t^2k$. (2) r(t) = (3 + 2t)i + (2 + t)j + k.

Describe the curve defined by the vector valued functions

(1) r(t) = < 3 + 2t, 1 - t, -2 + 4t >. (2) $r(t) = < 2, 4 \cos t, 9 \sin t >$. **Examples** (1) Let $r(t) = ti + (9 - t^2)j$ for $-3 \le t \le 3$. a- Sketch the curve *C* determined by r(t), b- Sketch r(t) for t = -3, -2, 0, 2, 3(2) Let $r(t) = 3ti + (1 - 9t^2)j$ for $t \in \mathbb{R}$. a- Sketch r(0) and r(1)b- Sketch the curve *C* determined by r(t),

Limits

Let r(t) = f(t)i + g(t)j + h(t)k. The limit of r(t) as t approaches to a is

$$\lim_{t \to a} r(t) = [\lim_{t \to a} f(t)]i + [\lim_{t \to a} g(t)]j + [\lim_{t \to a} h(t)]k$$

provided f, g and h have limits as t as approaches to a.

Continuity

A vector valued function r(t) is continuous at t = a if

$$\lim_{t \to a} r(t) = r(a).$$

Derivatives

If $\boldsymbol{r}(t)=f(t)i+g(t)j+h(t)k$ and components f,g, and h are differentiable, then

$$\frac{d}{dt}r(t) = \frac{d}{dt}f(t)i + \frac{d}{dt}g(t)j + \frac{d}{dt}h(t)k$$

Differentiation Rules

If u and v are differentiable vector-valued functions and c is scalar, then (1) $\frac{d}{dt}[u(t) + v(t)] = u'(t) + v'(t)$ (2) $\frac{d}{dt}[cu(t)] = cu'(t)$ (3) $\frac{d}{dt}[f(t)u(t)] = f'(t)u(t) + f(t)u'(t)$ (4) $\frac{d}{dt}[u(t).v(t)] = u'(t).v(t) + u(t).v'(t)$ (5) $\frac{d}{dt}[u(t) \times v(t)] = u'(t) \times v(t) + u(t) \times v'(t)$ (6) $\frac{d}{dt}[u(f(t))] = f'(t)u'(f(t))$, Chain Rule

Note 1: The vector r'(t) is called **tangent vector** to the curve at point *P*.

Note 2: The tangent line to the curve C at point P is defined to be line through P and parallel to vector r'(t).

Note 3: The unit tangent vector is

$$T(t) = \frac{r'(t)}{|r'(t)|}$$

Note 4: Geometrical interpretation of r'(t) and r''(t)

Note 5: $\lim_{t\to 0} r(t)$ does not exist if one of limit of components r(t) does not exist.

(1) Find $\lim_{t\to 0} r(t)$, where $r(t) = (1-t)i + 4e^t j + \frac{\sin 2t}{t}k$. (2) $r(t) = ti + t^2 j + t^3 k, t \ge 0$. Find r'(t), r''(t), r'(t).r''(t) and $r'(t) \times r''(t)$. Find the parametric equations of the tangent line when t = 2. (3) Find the parametric equations of the tangent line to c, which given paramerically by $x = 2t^3 - 1, y = -5t^2 + 3, z = 8t + 2$ at point P(1, -2, 10). (4) $r(t) = ti + 2j + t^2k$, and $u(t) = i - t^2j + t^3k$. Find $\frac{d}{dt}[r(t).u(t)]$ and $\frac{d}{dt}[u(t).u'(t)]$

Definition

Let the position vector for a point $P(x,y) \ P(x,y,z)$ moving in an $xy\mbox{-plane } solid$ be

$$r(t) = x\mathbf{i} + y\mathbf{j} = f(t)\mathbf{i} + g(t)\mathbf{j}$$
 2D

$$r(t) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k} \qquad 3D$$

where t is time and f, g and h have first and second derivatives. The velocity, speed and acceleration of P at time t are as follows: **Velocity:** $v(t) = r'(t) = \frac{d}{dt}f(t)\mathbf{i} + \frac{d}{dt}g(t)\mathbf{j} + \frac{d}{dt}h(t)\mathbf{k}$ **Speed:** $||v(t)|| = ||r'(t)|| = \sqrt{f'(t)^2 + g'(t)^2 + h'(t)^2}$ **Acceleration:** $a(t) = v'(t) = r''(t) = \frac{d^2}{dt^2}f(t)\mathbf{i} + \frac{d^2}{dt^2}g(t)\mathbf{j} + \frac{d^2}{dt^2}h(t)\mathbf{k}$

(1) Find velocity, acceleration and speed of $r(t) = t\mathbf{i} + t^3\mathbf{j} + 2t^2\mathbf{k}$ at t = 1.

(2) Find velocity, acceleration and speed of $r(t) = t \cos t \mathbf{i} + t \sin t \mathbf{j} + t^2 \mathbf{k}$ at $t = \pi/2$.

(3) Find the components of velocity and acceleration at t = 1 in direction $b = 2\mathbf{i} - 3\mathbf{j} + \mathbf{k}$, where $x = t^2$, y = t - 4, $z = t^3 - 3$.

Definition

The indefinite integral of a continuous vector valued function

$$r(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$$

is

$$\int r(t)dt = \Big[\int f(t)dt\Big]\mathbf{i} + \Big[\int g(t)dt\Big]\mathbf{j} + \Big[\int h(t)dt\Big]\mathbf{k}$$

The definite integral of a continuous vector valued function $r(t)=f(t){\bf i}+g(t){\bf j}+h(t){\bf k}$ on interval [a,b] is

$$\int_{a}^{b} r(t)dt = \Big[\int_{a}^{b} f(t)dt\Big]\mathbf{i} + \Big[\int_{a}^{b} g(t)dt\Big]\mathbf{j} + \Big[\int_{a}^{b} h(t)dt\Big]\mathbf{k}$$

Find the path of the curve when acceleration of the particle moving along this curve is $a(t) = -2\cos t\mathbf{i} - 2\sin t\mathbf{j} + 2\mathbf{k}$, initial velocity of the particle is v(0) = 2j and it starts from point (2, 0, 0).

Unit Tangent Vector

$$T(t) = \frac{r'(t)}{|r'(t)|}$$

Principal Normal Vector

$$N(t) = \frac{T'(t)}{|T'(t)|}$$

Dr. Bandar Al-Mohsin MATH107 Vectors and Matrices

Curvature of the curve C when $r(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$ is

$$\kappa = \frac{|T'(t)|}{|r'(t)|}$$

Curvature of the curve C when x = f(t), y = g(t) is

$$\kappa = \frac{|f'(t)g''(t) - g'(t)f''(t)|}{|(f'(t))^2 + (g'(t))^2|^{\frac{3}{2}}}$$

Curvature of the curve C when y = f(t) is

$$\kappa = \frac{|y''|}{|1+(y')^2|^{\frac{3}{2}}}$$

Radius of Curvature ρ

$$\rho = \frac{1}{\kappa}$$

Centre of Curvature (h, k)

$$h = x - \frac{y'(1+(y')^2)}{y''}, \quad k = y + \frac{(1+(y')^2)}{y''}$$

(1) Find unit tangent vector and principal normal vector of the curve $r(t) = \cos t \mathbf{i} + \sin t \mathbf{j} + t \mathbf{k}$.

(2) Find the curvature of the curve given by $r(t) = 2t\mathbf{i} + t^2\mathbf{j} - \frac{1}{3}t^3\mathbf{k}$.

(3) Find the curvature of the curve given by $x = \cos^3 t, y = \sin^3 t$ at point $p(\frac{\sqrt{2}}{4}, \frac{\sqrt{2}}{4})$.

(4) Find the radius and center of curvature of the curve given by $y = x^4$ at point P(1,1).

(5) Find the radius and center of curvature of the curve given by $x = t^2, y = t^3$ at t = 0.5.

Tangential and Normal components of Acceleration

$$a = a_T T + a_N N$$
$$\|a\|^2 = a_T^2 + a_N^2$$

Tangential Component

$$a_T = \frac{r'(t).r''(t)}{\|r'(t)\|}$$

Normal Component

$$a_N = \frac{\|r'(t) \times r''(t)\|}{\|r'(t)\|} = \sqrt{\|a\|^2 - a_T^2}$$

Curvature

$$\kappa = \frac{\|r'(t) \times r''(t)\|}{\|r'(t)\|^3} = a_N \frac{1}{\|r'(t)\|^2}$$

(1) Find unit tangential and normal components of acceleration at time t, when $r(t) = 3t\mathbf{i} + t^3\mathbf{j} + 3t^2\mathbf{k}$. Also find Curvature.

Cylindrical coordinates

Cylindrical coordinates

The cartesian coordinates (x,y,z) and the cylindrical coordinates (r,θ,z) of a point P are related as follows:

$$x = r \cos \theta$$
, $y = r \sin \theta$, $\tan \theta = \frac{y}{x}$,
 $r^2 = x^2 + y^2$, $z = z$

Spherical coordinates

Spherical coordinates

The cartesian coordinates (x,y,z) and the spherical coordinates (ρ,ϕ,θ) of a point P are related as follows:

(1)
$$x = \rho \sin \phi \cos \theta$$
, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$
(2) $\rho^2 = x^2 + y^2 + z^2$

Spherical to cylindrical

$$r^{2} = \rho^{2} \sin^{2} \phi$$
$$\theta = \theta$$
$$z = \rho \cos \phi$$

cylindrical to Spherical

$$\rho = \sqrt{r^2 + z^2}$$
$$\theta = \theta$$
$$\phi = \left[\frac{z}{\sqrt{r^2 + z^2}}\right]$$

Examples

(1) Express (x, y, z) = (7, 3, 2) in Cylindrical and spherical coordinates.

(2) Find an equation in the spherical coordinates, whose graph is the paraboloid $z = x^2 + y^2$.