MATH107 Vectors and Matrices

Dr. Bandar Al-Mohsin
School of Mathematics, KSU

20/11/16

Vector valued functions

Let D be a set of real numbers $D \in \mathbb{R}$. A vector-valued functions r with domain D is a correspondence that assigns to each number t in D exactly one vector $r(t)$ in V_{3} such as

$$
r(t)=f(t) i+g(t) j+h(t) k \quad t \in D
$$

where f, g and h are real valued functions called components of vector $r(t)$.

Note: Domain of $r(t)$ is common domain of its components.

Examples

Find the domain of $r(t)$
(1) $r(t)=(3+2 t) i+\sqrt{1-t} j+t^{2} k$.
(2) $r(t)=(3+2 t) i+(2+t) j+k$.

Examples

Describe the curve defined by the vector valued functions
(1) $r(t)=<3+2 t, 1-t,-2+4 t>$.
(2) $r(t)=<2,4 \cos t, 9 \sin t>$.

Examples

(1) Let $r(t)=t i+\left(9-t^{2}\right) j$ for $-3 \leqslant t \leqslant 3$.
a- Sketch the curve C determined by $r(t)$,
b- Sketch $r(t)$ for $t=-3,-2,0,2,3$
(2) Let $r(t)=3 t i+\left(1-9 t^{2}\right) j$ for $t \in \mathbb{R}$.
a- Sketch $r(0)$ and $r(1)$
b- Sketch the curve C determined by $r(t)$,

Limits

Let $r(t)=f(t) i+g(t) j+h(t) k$. The limit of $r(t)$ as t approaches to a is

$$
\lim _{t \rightarrow a} r(t)=\left[\lim _{t \rightarrow a} f(t)\right] i+\left[\lim _{t \rightarrow a} g(t)\right] j+\left[\lim _{t \rightarrow a} h(t)\right] k
$$

provided f, g and h have limits as t as approaches to a.

Continuity

A vector valued function $r(t)$ is continuous at $t=a$ if

$$
\lim _{t \rightarrow a} r(t)=r(a)
$$

Derivatives

If $r(t)=f(t) i+g(t) j+h(t) k$ and components f, g, and h are differentiable, then

$$
\frac{d}{d t} r(t)=\frac{d}{d t} f(t) i+\frac{d}{d t} g(t) j+\frac{d}{d t} h(t) k
$$

Differentiation Rules

If u and v are differentiable vector-valued functions and c is scalar, then
(1) $\frac{d}{d t}[u(t)+v(t)]=u^{\prime}(t)+v^{\prime}(t)$
(2) $\frac{d}{d t}[c u(t)]=c u^{\prime}(t)$
(3) $\frac{d}{d t}[f(t) u(t)]=f^{\prime}(t) u(t)+f(t) u^{\prime}(t)$
(4) $\frac{d}{d t}[u(t) \cdot v(t)]=u^{\prime}(t) \cdot v(t)+u(t) \cdot v^{\prime}(t)$
(5) $\frac{d}{d t}[u(t) \times v(t)]=u^{\prime}(t) \times v(t)+u(t) \times v^{\prime}(t)$
(6) $\frac{d}{d t}[u(f(t))]=f^{\prime}(t) u^{\prime}(f(t))$, Chain Rule

Note 1: The vector $r^{\prime}(t)$ is called tangent vector to the curve at point P.

Note 2: The tangent line to the curve C at point P is defined to be line through P and parallel to vector $r^{\prime}(t)$.
Note 3: The unit tangent vector is

$$
T(t)=\frac{r^{\prime}(t)}{\left|r^{\prime}(t)\right|}
$$

Note 4: Geomertical interpretation of $r^{\prime}(t)$ and $r^{\prime \prime}(t)$

Note 5: $\lim _{t \rightarrow 0} r(t)$ does not exist if one of limit of components $r(t)$ does not exist.

Examples

(1) Find $\lim _{t \rightarrow 0} r(t)$, where $r(t)=(1-t) i+4 e^{t} j+\frac{\sin 2 t}{t} k$.
(2) $r(t)=t i+t^{2} j+t^{3} k, t \geqslant 0$. Find $r^{\prime}(t), r^{\prime \prime}(t), r^{\prime}(t) \cdot r^{\prime \prime}(t)$ and $r^{\prime}(t) \times r^{\prime \prime}(t)$. Find the parametric equations of the tangent line when $t=2$.
(3) Find the parametric equations of the tangent line to c, which given paramerically by $x=2 t^{3}-1, y=-5 t^{2}+3, z=8 t+2$ at point $P(1,-2,10)$.
(4) $r(t)=t i+2 j+t^{2} k$, and $u(t)=i-t^{2} j+t^{3} k$. Find $\frac{d}{d t}[r(t) . u(t)]$ and $\frac{d}{d t}\left[u(t) \cdot u^{\prime}(t)\right]$

Definition

Let the position vector for a point $P(x, y) P(x, y, z)$ moving in an $x y$-plane solid be

$$
\begin{gathered}
r(t)=x \mathbf{i}+y \mathbf{j}=f(t) \mathbf{i}+g(t) \mathbf{j} \quad 2 D \\
r(t)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k} \quad 3 D
\end{gathered}
$$

where t is time and f, g and h have first and second derivatives. The velocity, speed and acceleration of P at time t are as follows:
Velocity: $v(t)=r^{\prime}(t)=\frac{d}{d t} f(t) \mathbf{i}+\frac{d}{d t} g(t) \mathbf{j}+\frac{d}{d t} h(t) \mathbf{k}$ Speed: $\|v(t)\|=\left\|r^{\prime}(t)\right\|=\sqrt{f^{\prime}(t)^{2}+g^{\prime}(t)^{2}+h^{\prime}(t)^{2}}$
Acceleration: $a(t)=v^{\prime}(t)=r^{\prime \prime}(t)=\frac{d^{2}}{d t^{2}} f(t) \mathbf{i}+\frac{d^{2}}{d t^{2}} g(t) \mathbf{j}+\frac{d^{2}}{d t^{2}} h(t) \mathbf{k}$

Examples

(1) Find velocity, acceleration and speed of $r(t)=t \mathbf{i}+t^{3} \mathbf{j}+2 t^{2} \mathbf{k}$ at $t=1$.
(2) Find velocity, acceleration and speed of $r(t)=t \cos t \mathbf{i}+t \sin t \mathbf{j}+t^{2} \mathbf{k}$ at $t=\pi / 2$.
(3) Find the components of velocity and acceleration at $t=1$ in direction $b=2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$, where $x=t^{2}, y=t-4, z=t^{3}-3$.

Definition

The indefinite integral of a continuous vector valued function

$$
r(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}
$$

is

$$
\int r(t) d t=\left[\int f(t) d t\right] \mathbf{i}+\left[\int g(t) d t\right] \mathbf{j}+\left[\int h(t) d t\right] \mathbf{k}
$$

The definite integral of a continuous vector valued function $r(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$ on interval $[a, b]$ is

$$
\int_{a}^{b} r(t) d t=\left[\int_{a}^{b} f(t) d t\right] \mathbf{i}+\left[\int_{a}^{b} g(t) d t\right] \mathbf{j}+\left[\int_{a}^{b} h(t) d t\right] \mathbf{k}
$$

Example 1

Find the path of the curve when acceleration of the particle moving along this curve is $a(t)=-2 \cos t \mathbf{i}-2 \sin t \mathbf{j}+2 \mathbf{k}$, initial velocity of the particle is $v(0)=2 j$ and it starts from point $(2,0,0)$.

Unit Tangent Vector

$$
T(t)=\frac{r^{\prime}(t)}{\left|r^{\prime}(t)\right|}
$$

Principal Normal Vector

$$
N(t)=\frac{T^{\prime}(t)}{\left|T^{\prime}(t)\right|}
$$

Curvature of the curve C when $r(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$ is

$$
\kappa=\frac{\left|T^{\prime}(t)\right|}{\left|r^{\prime}(t)\right|}
$$

Curvature of the curve C when $x=f(t), y=g(t)$ is

$$
\kappa=\frac{\left|f^{\prime}(t) g^{\prime \prime}(t)-g^{\prime}(t) f^{\prime \prime}(t)\right|}{\left|\left(f^{\prime}(t)\right)^{2}+\left(g^{\prime}(t)\right)^{2}\right|^{\frac{3}{2}}}
$$

Curvature of the curve C when $y=f(t)$ is

$$
\kappa=\frac{\left|y^{\prime \prime}\right|}{\left|1+\left(y^{\prime}\right)^{2}\right|^{\frac{3}{2}}}
$$

Radius of Curvature ρ

$$
\rho=\frac{1}{\kappa}
$$

Centre of Curvature (h, k)

$$
h=x-\frac{y^{\prime}\left(1+\left(y^{\prime}\right)^{2}\right)}{y^{\prime \prime}}, \quad k=y+\frac{\left(1+\left(y^{\prime}\right)^{2}\right)}{y^{\prime \prime}}
$$

Examples

(1) Find unit tangent vector and principal normal vector of the curve $r(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}$.
(2) Find the curvature of the curve given by $r(t)=2 t \mathbf{i}+t^{2} \mathbf{j}-\frac{1}{3} t^{3} \mathbf{k}$.
(3) Find the curvature of the curve given by $x=\cos ^{3} t, y=\sin ^{3} t$ at point $p\left(\frac{\sqrt{2}}{4}, \frac{\sqrt{2}}{4}\right)$.
(4) Find the radius and center of curvature of the curve given by $y=x^{4}$ at point $P(1,1)$.
(5) Find the radius and center of curvature of the curve given by $x=t^{2}, y=t^{3}$ at $t=0.5$.

Tangential and Normal components of Acceleration

$$
\begin{gathered}
a=a_{T} T+a_{N} N \\
\|a\|^{2}=a_{T}^{2}+a_{N}^{2}
\end{gathered}
$$

Tangential Component

$$
a_{T}=\frac{r^{\prime}(t) \cdot r^{\prime \prime}(t)}{\left\|r^{\prime}(t)\right\|}
$$

Normal Component

$$
a_{N}=\frac{\left\|r^{\prime}(t) \times r^{\prime \prime}(t)\right\|}{\left\|r^{\prime}(t)\right\|}=\sqrt{\|a\|^{2}-a_{T}^{2}}
$$

Curvature

$$
\kappa=\frac{\left\|r^{\prime}(t) \times r^{\prime \prime}(t)\right\|}{\left\|r^{\prime}(t)\right\|^{3}}=a_{N} \frac{1}{\left\|r^{\prime}(t)\right\|^{2}}
$$

Examples

(1) Find unit tangential and normal components of acceleration at time t, when $r(t)=3 t \mathbf{i}+t^{3} \mathbf{j}+3 t^{2} \mathbf{k}$. Also find Curvature.

Cylindrical coordinates

Cylindrical coordinates

The cartesian coordinates (x, y, z) and the cylindrical coordinates (r, θ, z) of a point P are related as follows:

$$
\begin{array}{r}
x=r \cos \theta, \quad y=r \sin \theta, \quad \tan \theta=\frac{y}{x} \\
r^{2}=x^{2}+y^{2}, \quad z=z
\end{array}
$$

Spherical coordinates

Spherical coordinates

The cartesian coordinates (x, y, z) and the spherical coordinates (ρ, ϕ, θ) of a point P are related as follows:
(1) $x=\rho \sin \phi \cos \theta, \quad y=\rho \sin \phi \sin \theta, \quad z=\rho \cos \phi$
(2) $\rho^{2}=x^{2}+y^{2}+z^{2}$

Figure 13.71

Spherical to cylindrical

$$
\begin{array}{r}
r^{2}=\rho^{2} \sin ^{2} \phi \\
\theta=\theta \\
z=\rho \cos \phi
\end{array}
$$

cylindrical to Spherical

$$
\begin{array}{r}
\rho=\sqrt{r^{2}+z^{2}} \\
\phi=\left[\frac{z=\theta}{\sqrt{r^{2}+z^{2}}}\right]
\end{array}
$$

Examples

(1) Express $(x, y, z)=(7,3,2)$ in Cylindrical and spherical coordinates.
(2) Find an equation in the spherical coordinates, whose graph is the paraboloid $z=x^{2}+y^{2}$.

