Life in suspension

1. Density

Sea water density: 1.021-1.028 g/cm³
Maximum freshwater density: 1 g/cm³
(at 4°C)

Carbohydrates: about 1.5 g/cm³

Protein: about 1.3 g/cm³

Lightest lipid: 0.86 g/cm³

Silica: 2.6 g/cm³

Calcite (Ca CO₃): 2.72 g/cm³

Freshwater diatoms: 1.02-1.25 g/cm³

Marine diatom: 1.112 g/cm³

Microcystis aeroginosa: 0.99-1.00

g/cm³

Chlorella vulgaris: 1.09 g/cm³

THE TENDENCY: P'>P

(Oscillatoria erythraea, Botryococcus braunii)

- 2. Water movements
- 3. Sizes and Shapes
- 4. Physiological regulation of cell density (Fat reserves, Gas vacuoles, control of ionic composition)

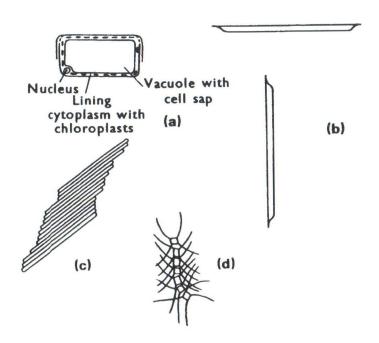
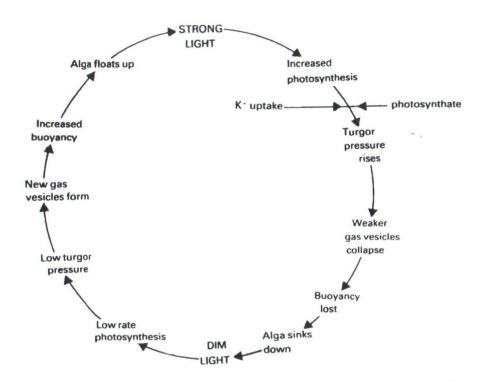
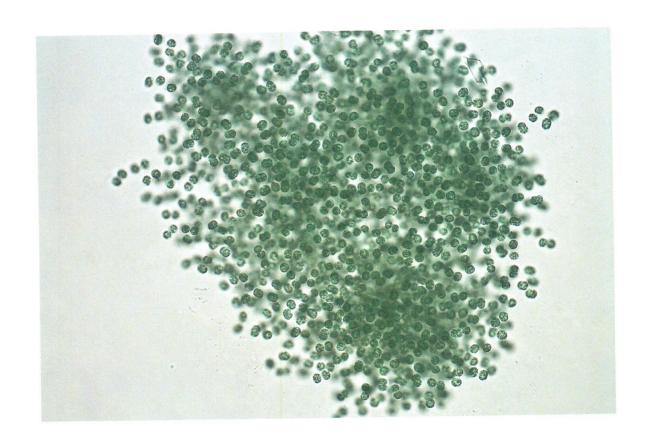
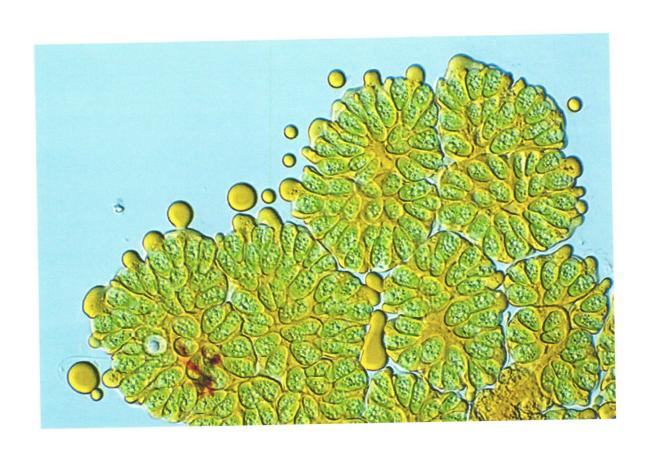
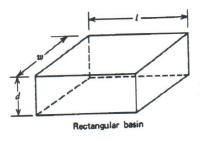


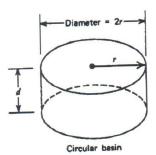
Fig. 3.1 (a) Bladder-like cell with large vacuole (Coscinodiscus) (b) Needle-like cell (Rhizosolenia – floating position (upper) and sinking position (c) Raft-like cell mass (Bacillaria) (d) Associated group of cells with spiny outgrowths (Chaetoceros).

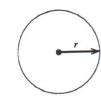

Fig. 3.2 Diagram showing the sequence of buoyancy regulation in planktonic bluegreens (after Reynolds and Walsby, 1975, Biol. Rev., 50, 437-81)78.



GEOMETRIC FORMULAS FOR BASINS OF VARIOUS SHAPES ($\pi = 3.1416$)

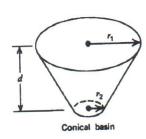

Surface area = w X / Circumference = 2w + 2l Volume = w x 1 x d

arc

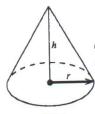

Surface area = $\frac{\pi \times r^2 \times \theta}{360}$

Length of arc = $\frac{\pi \times r \times \theta}{180}$

Arc of a circle θ degrees



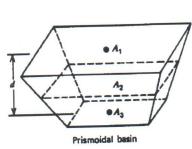
Circumference = 2 X # X r Volume = $\pi \times r^2 \times d$



Surface area = $4 \times \pi \times r^2$ Volume = $\frac{4}{3} \times \pi \times r^3$

Sphere

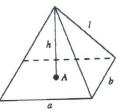
Volume = $\frac{d}{3} \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$



Curved surface area = $\pi \times r \times \sqrt{r^2 + h^2}$ Volume = $\frac{\pi}{3} \times r^2 + h$

Volume = $\frac{a \times b \times h}{3}$

Area of side = $\frac{a \times l}{2}$


Cone

Volume = $\frac{d}{6} \times (A_1 + 4A_2 + A_3)$ where A_1 = surface area A_2 = area of midsection

 A_3 = bottom area

d = depth

Pyramid

Area of base = $a \times b$