Exercises:

Chapter 8 Infinite Series:

8.1 Sequences:

Exer. 2-14: The expression is the nth term a_{n} of a sequence $\left\{a_{n}\right\}$. Find the first four terms and $\lim _{n \rightarrow \infty} a_{n}$, if it exists.

2. $\frac{6 n-5}{5 n+1}$

7. $\frac{(2 n-1)(3 n+1)}{n^{3}+1}$
8. $(-1)^{n+1} \frac{\sqrt{n}}{n+1}$
9. $1-\frac{1}{2^{n}}$

Exer. 18-42: Determine whether the sequence converges or diverges, and if it converges, find the limit.
18. $\left\{8-\left(\frac{7}{8}\right)^{n}\right\}$
22. $\left\{\frac{(1.0001)^{n}}{1000}\right\}$
26. $\left\{\frac{\cos n}{n}\right\}$
28. $\left\{e^{-n} \ln n\right\}$
30. $\left\{(-1)^{n} n^{3} 3^{-n}\right\}$
31. $\left\{2^{-n} \sin n\right\}$
33. $\left\{\frac{n^{2}}{2 n-1}-\frac{n^{2}}{2 n+1}\right\}$
37. $\left\{n^{\frac{1}{n}}\right\}$
40. $\left\{(-1)^{n} \frac{n^{2}}{1+n^{2}}\right\}$
42. $\left\{\sqrt{n^{2}+n}-n\right\}$

8.2 Convergent or divergent series:

Exer. 2-6: Find (a) S_{1}, S_{2}, and S_{3}; (b) S_{n}; (c) the sum of the series, if it converges.
2. $\sum_{n=1}^{\infty} \frac{5}{(5 n+2)(5 n+7)}$ 6. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}+\sqrt{n}}$ (Hint : Rationalize the denominator)

Exer. 7-16: Determine whether the geometric series converges or diverges; if it converges, find its sum.
$7.3+\frac{3}{4}+\cdots+\frac{3}{4^{n-1}}+\cdots$
$10.1+\left(\frac{e}{3}\right)+\cdots+\left(\frac{e}{3}\right)^{n-1}+\cdots$
12. $0.628+0.000628+\cdots+\frac{628}{(100)^{n}}+\cdots$
13. $\sum_{n=1}^{\infty} 2^{-n} 3^{n-1}$
16. $\sum_{n=1}^{\infty}(\sqrt{2})^{n-1}$

Exer. 18-20: Find all values of x for which the series converges, and find the sum of the series.
18. $1+x^{2}+x^{4}+\cdots+x^{2 n}+\cdots$
$20.3+(x-1)+\frac{(x-1)^{2}}{3}+\cdots+\frac{(x-1)^{n}}{3^{n-1}}+\cdots$

Exer. 26-30: Determine whether the series converges or diverges.
26. $\frac{1}{10 \cdot 11}+\frac{1}{11 \cdot 12}+\cdots+\frac{1}{(n+9)(n+10)}+\cdots$
30. $6^{-1}+7^{-1}+\cdots+(n+5)^{-1}+\cdots$

Exer. 39-40: Use the n th-term test to determine whether the series diverges or needs further investigation.
39. $\sum_{n=1}^{\infty} \frac{n}{\ln (n+1)} \quad 40 . \sum_{n=1}^{\infty} \ln \left(\frac{2 n}{7 n-5}\right)$

Exer. 41-48: Use known convergent or divergent series to determine whether the series is convergent or divergent; if it converges, find its sum.
41. $\sum_{n=1}^{\infty}\left[\left(\frac{1}{4}\right)^{n}+\left(\frac{3}{4}\right)^{n}\right]$
42. $\sum_{n=1}^{\infty}\left[\left(\frac{3}{2}\right)^{n}+\left(\frac{2}{3}\right)^{n}\right]$
47. $\sum_{n=1}^{\infty}\left(\frac{5}{n+2}-\frac{5}{n+3}\right)$
48. $\sum_{n=1}^{\infty}\left(\frac{1}{n+1}-\frac{1}{n}\right)$

8.3 Positive-term series:

Exer. 2-11: (a) Show that the function f determined by the nth term of the series satisfies the hypotheses of the integral test. (b) Use the integral test to determine whether the series converges or diverges.
2. $\sum_{n=1}^{\infty} \frac{1}{(4+n)^{\frac{3}{2}}}$
5. $\sum_{n=1}^{\infty} n^{2} e^{-n^{3}}$
7. $\sum_{n=3}^{\infty} \frac{\ln n}{n}$
8. $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$
10. $\sum_{n=4}^{\infty}\left(\frac{1}{n-3}-\frac{1}{n}\right)$
11. $\sum_{n=l}^{\infty} \frac{\tan ^{-1} n}{1+n^{2}}$

Exer. 13-20: Use a basic comparison test to determine whether the series converges or diverges.
13. $\sum_{n=1}^{\infty} \frac{1}{n^{4}+n^{2}+1}$
17. $\sum_{n=1}^{\infty} \frac{\tan ^{-1} n}{n}$
18. $\sum_{n=1}^{\infty} \frac{\sec ^{-1} n}{(0.5)^{n}}$
20. $\sum_{n=1}^{\infty} \frac{1}{n!}$

Exer. 23-25: Use the limit comparison test to determine whether the series converges or diverges.
23. $\sum_{n=2}^{\infty} \frac{1}{\sqrt{4 n^{3}-5 n}}$
24. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)(n+2)}}$
25. $\sum_{n=1}^{\infty} \frac{8 n^{2}-7}{e^{n}(n+1)^{2}}$

Exer. 30-46: Determine whether the series converges or diverges.
30. $\sum_{n=1}^{\infty} \frac{n^{5}+4 n^{3}+1}{2 n^{8}+n^{4}+2}$
33. $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{5 n^{2}+1}}$
38. $\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}$
43. $\sum_{n=1}^{\infty} \frac{n^{2}+2^{n}}{n+3^{n}}$
44. $\sum_{n=1}^{\infty} \ln \left(1+\frac{1}{2^{n}}\right)$
45. $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3}}$
46. $\sum_{n=1}^{\infty} \frac{\sin n+2^{n}}{n+5}$

8.4 Ratio and root tests:

Exer. 3-10: Find $\lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{a_{n}}\right)$, and use the ratio test to determine if the series converges or diverges or if the test is inconclusive.
3. $\sum_{n=1}^{\infty} \frac{5^{n}}{n\left(3^{n+1}\right)}$
4. $\sum_{n=1}^{\infty} \frac{2^{n-1}}{5^{n}(n+1)}$
7. $\sum_{n=1}^{\infty} \frac{n+3}{n^{2}+2 n+5}$
10. $\sum_{n=1}^{\infty} \frac{n!}{(n+1)^{5}}$

Exer. 12-18: Find $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}$, and use the root test to determine if the series converges or diverges or if the test is conclusive.
12. $\sum_{n=1}^{\infty} \frac{(\ln n)^{n}}{n^{\frac{n}{2}}}$
14. $\sum_{n=2}^{\infty} \frac{5^{n+1}}{(\ln n)^{n}}$
17. $\sum_{n=1}^{\infty}\left(\frac{n}{2 n+1}\right)^{n}$
18. $\sum_{n=2}^{\infty}\left(\frac{n}{\ln n}\right)^{n}$

Exer. 21-38: Determine whether the series converges or diverges.
21. $\sum_{n=1}^{\infty} \frac{99^{n}\left(n^{5}+2\right)}{n^{2} 10^{2 n}}$
25. $\sum_{n=1}^{\infty}\left(\frac{2}{n}\right)^{n} n!$
30. $\sum_{n=1}^{\infty} \frac{(2 n)!}{2^{n}}$
31. $\sum_{n=2}^{\infty} \frac{1}{n \sqrt[3]{\ln n}}$
36. $\sum_{n=1}^{\infty} \frac{\tan ^{-1} n}{n^{2}}$
37. $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n}$
38. $\sum_{n=1}^{\infty} \frac{1}{(\ln n)^{n}}$

8.5 Alternating series and absolute convergence:

Exer. 1-4: Determine whether the series (a) satisfies the conditions of the alternating series test and (b) converges or diverges.

1. $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n^{2}+7}$
2. $\sum_{n=1}^{\infty}(-1)^{n} \frac{e^{2 n}+1}{e^{2 n}-1}$

Exer. 5-31: Determine whether the series is absolutely convergent, conditionally convergent, or divergent.
5. $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{\sqrt{2 n+1}}$
6. $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n^{2}}$
8. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n}{n^{2}+4}$
11. $\sum_{n=1}^{\infty}(-1)^{n} \frac{5}{n^{3}+1}$
15. $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}+3}{(2 n-5)^{2}}$
18. $\sum_{n=1}^{\infty}(-1)^{n} \frac{(n+1)^{2}}{n^{5}+1}$
21. $\sum_{n=1}^{\infty}(-1)^{n} n \sin \frac{1}{n}$
22. $\sum_{n=1}^{\infty}(-1)^{n} \frac{\tan ^{-1} n}{n^{2}}$
26. $\sum_{n=1}^{\infty} \frac{\left(n^{2}+1\right)^{n}}{(-n)^{n}}$
28. $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{4}}{e^{n}}$
31. $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{(n-4)^{2}+5}$

8.6 Power series:

Exer. 5-30: Find the interval of convergence of the power series.
5. $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{\sqrt{n}} x^{n}$
6. $\sum_{n=1}^{\infty} \frac{1}{\ln (n+1)} x^{n}$
9. $\sum_{n=2}^{\infty} \frac{\ln n}{n^{3}} x^{n}$
10. $\sum_{n=0}^{\infty} \frac{10^{n+1}}{3^{2 n}} x^{n}$
12. $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}(x-2)^{n}$
13. $\sum_{n=0}^{\infty} \frac{n!}{100^{n}} x^{n}$
16. $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{\sqrt[3]{n} 3^{n}} x^{n}$
19. $\sum_{n=0}^{\infty} \frac{3^{2 n}}{n+1}(x-2)^{n}$
22. $\sum_{n=0}^{\infty} \frac{1}{2 n+1}(x+3)^{n}$
23. $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{n}}{n+1}(x-3)^{n}$
27. $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n 6^{n}}(2 x-1)^{n}$
30. $\sum_{n=1}^{\infty}(-1)^{n} \frac{e^{n+1}}{n^{n}}(x-1)^{n}$

8.7 Power series representations of functions:

Exer. 2-4: (a) Find a power series representation for $f(x)$. (b) Find power series representation for $f^{\prime}(x)$ and $\int_{0}^{x} f(t) d t$.

1. $f(x)=\frac{1}{1+5 x} ; \quad|x|<\frac{1}{5}$
2. $f(x)=\frac{1}{3-2 x} ;$
$|x|<\frac{3}{2}$

Exer. 7-10: Find a power series in x that has the given sum, and specify the radius of convergence.
7. $\frac{x}{2-3 x}$
10. $\frac{x^{2}-3}{x-2}$

Exer. 16-21: Use power series representation obtained in this section to find a power series representation for $f(x)$.
16. $f(x)=x^{2} e^{\left(x^{2}\right)}$
18. $f(x)=x e^{-3 x}$
19. $f(x)=x^{2} \ln \left(1+x^{2}\right) ;|x|<1$
21. $f(x)=\tan ^{-1} \sqrt{x} ;|x|<1 \quad$ 25. $f(x)=x^{2} \cosh \left(x^{3}\right)$

Exer. 28-31: Use an infinite series to approximate the integral to four decimal places.
28. $\int_{0}^{\frac{1}{2}} \tan ^{-1} x^{2} d x$
29. $\int_{0.1}^{0.2} \frac{\tan ^{-1} x}{x} d x$
31. $\int_{0}^{1} e^{\frac{-x^{2}}{10}} d x$
33. Use the power series representation for $\left(1-x^{2}\right)^{-1}$ to find a power representation for $2 x\left(1-x^{2}\right)^{-2}$.

8.8 Maclaurin and Taylor series:

Exer. 9-13: Use a MacLaurin series obtained in this section to obtain a MacLaurin series for $f(x)$.
9. $f(x)=x \sin 3 x$
10. $f(x)=x^{2} \sin x \quad$ 11. $f(x)=\cos (-2 x)$
13. $f(x)=\cos ^{2} x$
(Hint : Use a half-angle formula.)

Exer. 16: Find a MacLaurin series for $f(x)$. (Do not verify that $\lim _{n \rightarrow \infty} R_{n}(x)=0$.)
16. $f(x)=\ln (3+x)$

Exer. 26-27: Find the first three terms of the Taylor series for $f(x)$ at c .
26. $f(x)=\tan ^{-1} x ; \quad c=1$
27. $f(x)=x e^{x} ; \quad c=-1$

Exer. 35-37: Use the first two nonzero terms of a MacLaurin series to approximate the number, and estimate the error in the approximation.
35. $\int_{0}^{1} e^{-x^{2}} d x$
36. $\int_{0}^{\frac{1}{2}} x \cos \left(x^{3}\right) d x$
37. $\int_{0}^{0.5} \cos \left(x^{2}\right) d x$

Exer. 39-42: Approximate the improper integral to four decimal places.
(Assume that if the integrand is $f(x)$, then $f(0)=\lim _{x \rightarrow \infty} f(x)$.)
39. $\int_{0}^{1} \frac{1-\cos x}{x^{2}} d x \quad 42 . \int_{0}^{1} \frac{1-e^{-x}}{x} d x$

Chapter 10 Vectors and Surfaces:

10.1 Vectors and vectors algebra:

Exer. 6: Sketch the position vector of a and find $\|a\|$.
6. $a=2 i-3 j$

Exer. 9-10: Find $a+b, a-b, 2 a,-3 b$, and $4 a-5 b$.
9. $a=-\langle 7,-2\rangle, \quad b=4\langle-2,1\rangle$
10. $a=2\langle 1,5\rangle, \quad b=-3\langle-1,-4\rangle$

Exer. 13-14: Use components to express the sum or difference as a scalar multiple of one of the vectors a, b, c, d, e, or f shown in the figure.

13. $a+b$
14. $\mathrm{c}-\mathrm{d}$

Exer. 21-22: Find the vector a in V_{2} that corresponds to $\overrightarrow{P Q}$. Sketch $\overrightarrow{P Q}$ and the position vector for a.
21. $\mathrm{P}(2,5), \quad \mathrm{Q}(-4,5)$
22. $\mathrm{P}(-4,6), \quad \mathrm{Q}(-4,-2)$

Exer. 25: Find a unit vector that has (a) the same direction as a and (b) the opposite direction of a.
25. $a=-8 i+15 j$
29. Find a vector that has the same direction as $\langle-6,3\rangle$ and
(a) twice the magnitude.
(b) one-half the magnitude.
30. Find a vector that has the opposite direction of $8 i-5 j$ and
(a) three times the magnitude.
(b) one-third the magnitude.
31. Find a vector of magnitude 4 that has the same direction as $a=4 i-7 j$.

Exer. 34: Find all real numbers c such that

$$
\text { (a) }\|c a\|=3 \text { (b) }\|c a\|=-3 \text { (c) }\|c a\|=0
$$

34. $a=\langle-5,12\rangle$

10.2 Vectors in three dimensions:

Exer. 5-6: Plot A and B and find (a) d(A,B), (b) the midpoint of $A B$, and (c) the vector in V_{3} that corresponds to $\overrightarrow{A B}$.
5. A($1,0,0$),
$\mathrm{B}(0,1,1)$
6. $\mathrm{A}(0,0,0)$, B(-8, -1, 4)

Exer. 8-12: Find (a) $a+b$, (b) $a-b$, (c) $5 a-4 b$, (d) $\|a\|$, and (e) $\|-3 a\|$.
8. $a=\langle 1,2,-3\rangle$
$b=\langle-4,0,1\rangle$
10. $\mathrm{a}=2 i-j+4 k$
$\mathrm{b}=i-k$
11. $\mathrm{a}=i+j$
$\mathrm{b}=-j+k$
12. $\mathrm{a}=2 i \quad \mathrm{~b}=3 k$

Exer. 14: Sketch position vectors for $\mathrm{a}, \mathrm{b}, 2 \mathrm{a},-3 \mathrm{~b}, \mathrm{a}+\mathrm{b}$, and $\mathrm{a}-\mathrm{b}$.
14. $\mathrm{a}=-i+2 j+3 k, \mathrm{~b}=-2 j+k$

Exer. 16: Find the unit vector that has the same direction as a.
16. $\mathrm{a}=3 i-7 j+2 k$

Exer. 18: Find the vector that has (a) the same direction as a and twice the magnitude of a, (b) the opposite direction of a and one-third the magnitude of a, and (c) the same direction as a and magnitude 2 .
18. $a=\langle-6,-3,6\rangle$

10.3 The dot product:

Exer. 5-10: Given $\mathrm{a}=\langle-2,3,1\rangle, \mathrm{b}=\langle 7,4,5\rangle$, and $\mathrm{c}=\langle 1,-5,2\rangle$, find the number.
5. $(2 a+b) \cdot 3 c$
6. $(a-b) \cdot(b+c)$
10. comp $_{c}$ c

Exer. 12-14: Find the angle between a and b .
12. $\mathrm{a}=i-7 j+4 k$,
$\mathrm{b}=5 i-k$
14. $a=\langle 3,-5,-1\rangle$,
$\mathrm{b}=\langle 2,1,-3\rangle$

Exer. 15: Show that a and b are orthogonal.

$$
\text { 15. } \mathrm{a}=3 i-2 j+k, \quad \mathrm{~b}=4 i+5 j-2 k
$$

Exer. 18: Find all values of c such that a and b are orthogonal.
18. $\mathrm{a}=4 i+2 j+c k$,
$\mathrm{b}=i+22 j-3 c k$

Exer. 23-24: Given points $\mathrm{P}(3,-2,-1), \mathrm{Q}(1,5,4), \mathrm{R}(2,0,-6)$, and $\mathrm{S}(-4,1,5)$, find the indicated quantity.
23. The component of $\overrightarrow{P S}$ along $\overrightarrow{Q R}$
24. The component of $\overrightarrow{Q R}$ along $\overrightarrow{P S}$

Exer. 26: If the vector a represents a constant force, find the work done when its point of application moves along the line segment from P to Q .
26. $\mathrm{a}=\langle 8,0,-4\rangle ; \quad \mathrm{P}(-1,-2,5), \quad \mathrm{Q}(4,1,0)$
27. A constant force of magnitude 4 lb has same direction as the vector a $=i+j+k$. If distance is measured in feet, find the work done if the point of application moves along the y-axis from $(0,2,0)$ to $(0,-1,0)$.

10.4 The cross product:

Exer. 7-9: Find $\mathrm{a} \times \mathrm{b}$.
7. $\mathrm{a}=-3 i+j+2 k$,
$\mathrm{b}=9 i-3 j-6 k$
8. $\mathrm{a}=3 i-j+8 k$,
$\mathrm{b}=5 j$
9. $\mathrm{a}=4 i-6 j+2 k$,
$\mathrm{b}=-2 i+3 j-k$

Exer. 11-12: Use the vector product to show that a and b are parallel.

$$
\begin{array}{ll}
\text { 11. } \mathrm{a}=\langle-6,-10,4\rangle, & \mathrm{b}=\langle 3,5,-2\rangle \\
\text { 12. } \mathrm{a}=2 i-j+4 k, & \mathrm{~b}=-6 i+3 j-12 k
\end{array}
$$

Exer. 14: Let $\mathrm{a}=\langle 2,0,-1\rangle, \mathrm{b}=\langle-3,1,0\rangle$, and $\mathrm{c}=\langle 1,-2,4\rangle$.
14. Find $a \times(b-c)$ and $(a \times b)-(a \times c)$

Exer. 15-18: (a) Find a vector perpendicular to the plane determined by P, Q, and R. (b) Find the area of the triangle PQR .
15. $\mathrm{P}(1,-1,2), \quad \mathrm{Q}(0,3,-1), \quad \mathrm{R}(3,-4,1)$
16. $\mathrm{P}(-3,0,5), \quad \mathrm{Q}(2,-1,-3), \quad \mathrm{R}(4,1,-1)$
18. $\mathrm{P}(-1,2,0), \quad \mathrm{Q}(0,2,-3), \quad \mathrm{R}(5,0,1)$

Exer. 20: Find the distance from P to the line through Q and R .
20. $\mathrm{P}(-2,5,1), \quad \mathrm{Q}(3,-1,4), \quad \mathrm{R}(1,6,-3)$

Exer. 23: Find the volume of the box having adjacent sides AB, AC, and AD.
23. $\mathrm{A}(2,1,-1) \quad \mathrm{B}(3,0,2) \quad \mathrm{C}(4,-2,1) \quad \mathrm{D}(5,-3,0)$

10.5 The lines and planes:

Exer. 2: Find parametric equations for the line through P parallel to a .
2. $\mathrm{P}(5,0,-2) ; \quad \mathrm{a}=\langle-1,-4,1\rangle$

Exer. 8: Find parametric equations for the line through P_{1} and P_{2}. Determine (if possible) the points at which the line intersects each of the coordinate planes.
8. $P_{1}(2,-2,4)$,
$P_{2}(2,-2,-3)$
9. If l has parametric equations $x=5-3 t, y=-2+t, z=1+9 t$, find parametric equations for the line through $\mathrm{P}(-6,4,-3)$ that is parallel to l.

Exer. 12: Determine whether the two lines intersect, and if so, find the point of intersection.

$$
\begin{array}{rll}
\text { 12. } \mathrm{x} & =1-6 \mathrm{t}, & \mathrm{y}=3+2 \mathrm{t}, \\
\mathrm{x} & =2+2 \mathrm{v}, & \mathrm{z}=1-2 \mathrm{t} \\
\mathrm{y}=6+\mathrm{v}, & \mathrm{z}=2+\mathrm{v}
\end{array}
$$

Exer. 15: Equations for two lines l_{1} and l_{2} are given. Find the angles between l_{1} and l_{2}.
15. $x=7-2 t$,
$y=4+3 t$,
$\mathrm{z}=5 \mathrm{t}$
$x=-1+4 t$,
$y=3+4 t$,
$\mathrm{z}=1+\mathrm{t}$

Exer. 20-21: Find an equation of the plane that satisfies the stated conditions.
20. Through $\mathrm{P}(-2,5,-8)$ with normal vector
(a) i
(b) j
(c) k
21. Through $\mathrm{P}(-11,4,-2)$ with normal vector $\mathrm{a}=6 i-5 j-k$

Exer. 28: Find an equation of the plane through P, Q, and R .
28. $\mathrm{P}(3,2,1), \quad \mathrm{Q}(-1,1,-2), \quad \mathrm{R}(3,-4,1)$

Exer. 35: Sketch the graph of the equation in an xyz-coordinate system.
35. $2 x-y+5 z+10=0$

Exer. 42: Find an equation of the plane through P that is parallel to the given plane.
42. $\mathrm{P}(3,-2,4) ; \quad-2 x+3 y-z+5=0$

Exer. 47: Find parametric equations for the line of intersection of the two planes.
47. $x+2 y-9 z=7, \quad 2 x-3 y+17 z=0$

Exer. 51: Find the distance from P to the plane.
51. $\mathrm{P}(1,-1,2) ; \quad 3 x-7 y+z-5=0$

10.6 Surfaces:

Exer. 2-5: Sketch the graph of the cylinder in an xyz-coordinate system.
2. $y^{2}+z^{2}=16$
3. $4 y^{2}+9 z^{2}=36$
5. $x^{2}=9 z$

Exer. 21-30: Sketch the graph of the quadric surface.
Ellipsoids
21. $\frac{x^{2}}{4}+\frac{y^{2}}{9}+\frac{z^{2}}{16}=1$
22. $x^{2}+\frac{y^{2}}{9}+\frac{z^{2}}{4}=1$

Hyperboloids of one sheet
24. (a) $z^{2}+x^{2}-y^{2}=1$
(b) $y^{2}+\frac{z^{2}}{4}-x^{2}=1$

Hyperboloids of two sheets
25. (a) $x^{2}-\frac{y^{2}}{4}-z^{2}=1$
(b) $\frac{z^{2}}{4}-y^{2}-x^{2}=1$

Cones
28. (a) $\frac{x^{2}}{25}+\frac{y^{2}}{9}-z^{2}=0$
(b) $x^{2}=4 y^{2}+z^{2}$

Paraboloids
30. (a) $z=x^{2}+\frac{y^{2}}{9} \quad$ (b) $\frac{z^{2}}{25}+\frac{y^{2}}{9}-x=0$

Exer. 33-40: Sketch the graph of the equation in an $x y z$-coordinate system, and identify the surface.
33. $16 x^{2}-4 y^{2}-z^{2}+1=0$
36. $16 x^{2}+100 y^{2}-25 z^{2}=400$
40. $16 y=x^{2}+4 z^{2}$

Chapter 11 Vector-valued functions:

11.1 Vector-valued functions:

Exer. 1-7: (a) Sketch the two vectors listed after the formula for $r(t)$. (b) Sketch, on the same coordinate system, the curve C determined by $r(t)$, and indicate the orientation for the given values of t.

1. $\mathrm{r}(\mathrm{t})=3 t \boldsymbol{i}+\left(1-9 t^{2}\right) \boldsymbol{j}, \quad \mathrm{r}(0), \quad \mathrm{r}(1) ; \quad \mathrm{t}$ in \mathbb{R}
2. $\mathrm{r}(\mathrm{t})=t \boldsymbol{i}+4 \cos t \boldsymbol{j}+9 \sin t \boldsymbol{k}, \mathrm{r}(0), \quad \mathrm{r}(\pi / 2) ; \quad \mathrm{t} \geq 0$

Exer. 12: Sketch the curve C determined by $r(t)$, and indicate the orientation.

$$
\text { 12. } \mathrm{r}(\mathrm{t})=t^{3} \boldsymbol{i}+t^{2} \boldsymbol{j}+t \boldsymbol{k} ; \quad 0 \leq t \leq 4
$$

Exer. 21-22: Find the arc length of the parametrized curve. Estimate with numerical integration if needed, and express answers to four decimal places of accuracy.
21. $\mathrm{x}=5 \mathrm{t}$,
$\mathrm{y}=4 t^{2}$,
$\mathrm{z}=3 t^{2}$;
$0 \leq t \leq 2$
22. $\mathrm{x}=t^{2}$,
$y=t \sin t$,
$\mathrm{z}=\mathrm{t} \cos \mathrm{t} ;$
$0 \leq t \leq 1$

11.2 Limits, derivatives and integrals:

Exer. 5-7: (a) Find the domain of r. (b) Find $r^{\prime}(t)$ and $r^{\prime \prime}(t)$.
5. $\mathrm{r}(\mathrm{t})=t^{2} \boldsymbol{i}+\tan t \boldsymbol{j}+3 \boldsymbol{k}$
7. $\mathrm{r}(\mathrm{t})=\sqrt{t} \boldsymbol{i}+e^{2 t} \boldsymbol{j}+t \boldsymbol{k}$

Exer. 18-20: A curve is given parametrically. Find parametric equations for the tangent line to C at P .

$$
\begin{array}{llll}
\text { 18. } \mathrm{x}=4 \sqrt{t}, & \mathrm{y}=t^{2}-10, & \mathrm{z}=4 / t ; & \mathrm{P}(8,6,1) \\
20 . \mathrm{x}=t \sin t, & \mathrm{y}=t \cos t, & \mathrm{z}=\mathrm{t} ; & \mathrm{P}(\pi / 2,0, \pi / 2)
\end{array}
$$

Exer. 18: Evaluate the integral.
28. $\int_{-1}^{1}\left(-5 t \boldsymbol{i}+8 t^{3} \boldsymbol{j}-3 t^{2} \boldsymbol{k}\right) d t$

Exer. 31: Find $r(t)$ subject to the given conditions.
31. $r^{\prime}(t)=t^{2} \boldsymbol{i}+(6 t+1) \boldsymbol{j}+8 t^{3} \boldsymbol{k}, \mathrm{r}(0)=2 i-3 j+k$

Exer. 35: If a curve C has a tangent vector a at a point P , then the normal plane to C at P is the plane through P with normal vector a. Find an equation of the normal plane to the given curve at P .
35. $\mathrm{x}=e^{t}$,
$\mathrm{y}=t e^{t}$,
$\mathrm{z}=t^{2}+4 ;$
$\mathrm{P}(1,0,4)$

11.3 Velocity, speed and acceleration:

Exer. 9-16: If $\mathrm{r}(\mathrm{t})$ is the position vector of a moving point P , find its velocity, and speed at the given time t .
9. $\mathrm{r}(\mathrm{t})=\frac{2}{t} \boldsymbol{i}+\frac{3}{t+1} \boldsymbol{j}$;
$\mathrm{t}=2$
12. $\mathrm{r}(\mathrm{t})=2 t \boldsymbol{i}+e^{-t^{2}} \boldsymbol{j} ;$
$\mathrm{t}=1$
14. $\mathrm{r}(\mathrm{t})=t(\cos t \boldsymbol{i}+\sin t \boldsymbol{j}+t \boldsymbol{k}) ;$
$\mathrm{t}=\pi / 2$
16. $\mathrm{r}(\mathrm{t})=2 t \boldsymbol{i}+\boldsymbol{j}+9 t^{2} \boldsymbol{k} ;$
$\mathrm{t}=2$

Chapter 12 Partial Differentiation:

12.1 Functions of several variables:

Exer. 1-6: Describe the domain of f, and find the indicated function values.

1. $f(x, y)=2 x-y^{2} ; \quad f(-2,5), f(5,-2), f(0,-2)$
2. $f(x, y)=\frac{y+2}{x} ; \quad f(3,1), \quad f(1,3), \quad f(2,0)$
3. $f(u, v)=\frac{u v}{u-2 v} ; \quad f(2,3), \quad f(-1,4), \quad f(0,1)$
4. $f(r, s)=\sqrt{1-r}-e^{r / s} ; f(1,1), \quad f(0,4), \quad f(-3,3)$
5. $f(x, y, z)=\sqrt{25-x^{2}-y^{2}-z^{2}}$;

$$
f(1,-2,2), \quad f(-3,0,2)
$$

6. $f(x, y, z)=2+\tan x+y \sin z ;$

$$
f\left(\frac{\pi}{4}, 4, \frac{\pi}{6}\right), \quad f(0,0,0)
$$

12.2 Limits and continuity:

Exer. 1-7: Find the limit.

1. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-2}{3+x y}$
2. $\lim _{(x, y) \rightarrow(-1,3)} \frac{y^{2}+x}{(x-1)(y+2)}$
3. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}-y^{4}}{x^{2}+y^{2}}$
4. $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{3}-2 x^{2} y+3 y^{2} x-2 y^{3}}{x^{2}+y^{2}}$

Exer. 11-15: Show that the limit does not exist.
11. $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{2}-y^{2}}{x^{2}+2 y^{2}}$
15. $\lim _{(x, y) \rightarrow(0,0)} \frac{4 x^{3} y}{2 x^{4}+3 y^{4}}$
12. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-2 x y+5 y^{2}}{3 x^{2}+4 y^{2}}$

Exer. 22-23: Use polar coordinates to find the limit, if it exists.
22. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}-y^{3}}{x^{2}+y^{2}}$
23. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}}{\sin \left(x^{2}+y^{2}\right)}$

Exer. 26-27: Describe the set of all points in the $x y$-plane at which f is continuous.
26. $f(x, y)=\frac{x y}{x^{2}-y^{2}}$
27. $f(x, y)=\sqrt{x} e^{\sqrt{1-y^{2}}}$

Exer. 29-30: Describe the set of all points in an $x y z$-coordinate system at which f is continuous.
29. $f(x, y, z)=\frac{1}{\chi^{2}+y^{2}-z^{2}} \quad$ 30. $f(x, y, z)=\sqrt{x y} \tan z$

12.3 Partial derivatives:

Exer. 1-17: Find the first partial derivatives of f.

1. $f(x, y)=2 x^{4} y^{3}-x y^{2}+3 y+1$
2. $f(s, t)=\frac{t}{s}-\frac{s}{t}$
3. $f(t, v)=\ln \sqrt{\frac{t+v}{t-v}}$
4. $f(x, y)=\sqrt{4 x^{2}-y^{2}} \sec x$
5. $f(r, s, t)=r^{2} e^{2 x} \cos t$
6. $f(q, v, w)=\sin ^{-1} \sqrt{q v}+\sin v w$

Exer. 24: Verify that $w_{x y}=w_{y x}$.
24. $w=\sqrt{x^{2}+y^{2}+z^{2}}$
26. If $w=u^{4} v t^{2}-3 u v^{2} t^{3}$, find $w_{t u t}$.
29. If $w=\sin x y z$, find $\frac{\partial^{3} w}{\partial z \partial y \partial x}$.
37. If $w=\cos (x-y)+\ln (x+y)$

Exer. 44: Show that the functions u and v satisfy the Cauchy-Riemann equations $u_{x}=v_{y}$ and $u_{y}=-v_{x}$.
44. $u(x, y)=\frac{y}{x^{2}+y^{2}} ; v(x, y)=\frac{x}{x^{2}+y^{2}}$
51. Suppose the electrical potential V at the point $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is given by $\mathrm{V}=100 /\left(x^{2}+y^{2}+z^{2}\right)$, where V is an volts and x, y, and z are in inches. Find the instantaneous rate of change of V with respect to distance at $(2,-1,1)$ in the direction of
(a) The x-axis
(b) The y-axis
(c) The z-axis

12.5 The Chain Rules:

Exer. 1: Find $\partial w / \partial x$ and $\partial w / \partial y$.

1. $w=u \sin v ; \quad u=x^{2}+y^{2}, \quad v=x y$

Exer. 3: Find $\partial w / \partial r$ and $\partial w / \partial s$.
3. $w=u^{2}+2 u v ; \quad u=r \ln s, \quad v=2 r+s$

Exer. 6: Find $\partial z / \partial x$ and $\partial z / \partial y$.
6. $z=p q+q w ; \quad p=2 x-y, \quad q=x-2 y, \quad w=-2 x+2 y$
9. If $p=u^{2}+3 v^{2}-4 w^{2}$, where $u=x-3 y+2 r-s$, $v=2 x+y-r+2 s$, and $w=-x+2 y+r+s$, find $\partial p / \partial r$.

Exer. 12-13: Find dw/dt.
12. $w=\ln (u+v)$;
$u=e^{-2 t}$,
$v=t^{3}-t^{2}$
13. $w=r^{2}-s \tan v ;$ $r=\sin ^{2} t, s=\cos t, v=4 t$

Exer. 16: Use partial derivatives to find $\frac{d y}{d x}$ if $y=f(x)$ is determined implicitly by the given equation.
-16. $x^{4}+2 x^{2} y^{2}-3 x y^{3}+2 x=0$

Exer. 19-20: Find $\partial z / \partial x$ and $\partial z / \partial y$ if $z=f(x, y)$ is determined implicitly by the given equation.
19. $2 x z^{3}-3 y z^{2}+x^{2} y^{2}+4 z=0$
20. $x z^{2}+2 x^{2} y-4 y^{2} z+3 y-2=0$

12.6 Directional derivatives (Gradients):

Exer. 5: Find the gradient of f at P .
5. $f(x, y, z)=y z^{3}-2 x^{2}$;
$\mathrm{P}(2,-3,1)$

Exer. 8-9: Estimate the directional derivative of f at P in the indicated direction with $\mathrm{s}=0.02,0.01$, and 0.005 .
8. $f(x, y)=x \ln \left(5 x^{2}+4 x y+y^{2}\right) ; \quad \mathrm{P}(\sqrt{5}, 3), \quad \mathrm{a}=-0.89 i+1.75 j$
9. $f(x, y, z)=y^{2} e^{z^{3}+5 x y}+6 x^{2} y z ; \quad \mathrm{P}(0,1.2,-2.5)$,

$$
\mathrm{a}=3.7 i+1.9 j-2.1 k
$$

Exer. 12: Find the directional derivative of f at the point P in the indicated direction.
12. $f(x, y)=x^{3}-3 x^{2} y-y^{3} ; \quad \mathrm{P}(1,-2), \quad \mathrm{u}=\frac{1}{2}(-i+\sqrt{3} j)$

Exer. 27: (a) Find the directional derivative of f at P in the direction from P to Q . (b) Find a unit vector in the direction in which f increases most rapidly at P , and find the rate of change of f in that direction. (c) Find a unit vector in the direction in which f decreases most rapidly at P , and find the rate of change of f in that direction.
27. $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}} ; \quad \mathrm{P}(-2,3,1), \quad \mathrm{Q}(0,-5,4)$
32. The temperature T at (x, y, z) is given by

$$
T=4 x^{2}-y^{2}+16 z^{2}
$$

(a) Find the rate of change of T at $\mathrm{P}(4,-2,1)$ in the direction of
$2 i+6 j-3 k$.
(b) In what direction does T increase most rapidly at P ?
(c) What is the maximum rate of change?
(d) In which direction does T decrease most rapidly at P ?
(e) What is this rate of change?

12.8 Extrema of functions of several variables:

Exer. 6-15: Find the extrema and saddle point of f.
6. $f(x, y)=-x^{2}-4 x-y^{2}+2 y-1$
9. $f(x, y)=\frac{1}{2} x^{2}+2 x y-\frac{1}{2} y^{2}+x-8 y$
11. $f(x, y)=\frac{1}{3} x^{3}-\frac{2}{3} y^{3}+\frac{1}{2} x^{2}-6 x+32 y+4$
12. $f(x, y)=\frac{1}{3} x^{3}+\frac{1}{3} y^{3}-\frac{3}{2} x^{2}-4 y$
13. $f(x, y)=\frac{1}{2} x^{4}-2 x^{3}+4 x y+y^{2}$
15. $f(x, y)=x^{4}+y^{3}+32 x-9 y$

12.9 Lagrange multipliers:

Exer. 2-8: Use lagrange multipliers to find the extrema of f subject to the stated constraints.
2. $f(x, y)=2 x^{2}+x y-y^{2}+y ; \quad 2 x+3 y=1$
3. $f(x, y, z)=x+y+z$;

$$
x^{2}+y^{2}+z^{2}=25
$$

4. $f(x, y, z)=x^{2}+y^{2}+z^{2}$;
$x+y+z=25$
5. $f(x, y, z)=x^{2}+y^{2}+z^{2}$;
$x-y+z=1$
6. $f(x, y, z)=z-x^{2}-y^{2}$;
$x+y+z=1, x^{2}+y^{2}=4$

Chapter 13 Multiple Integrals:

13.1 Double integrals:

Exer. 13-19: Evaluate the iterated integral.
13. $\int_{1}^{2} \int_{-1}^{2}\left(12 x y^{2}-8 x^{3}\right) d y d x$
17. $\int_{0}^{3} \int_{-2}^{-1}\left(4 x y^{3}+y\right) d x d y$
19. $\int_{1}^{2} \int_{x^{3}}^{x} e^{\frac{y}{x}} d y d x$

Exer. 21-26: Sketch the region R bounded by the graphs of the given equations. If $f(x, y)$ is an arbitrary continuous function, express
$\iint_{R} f(x, y) d A$ as an iterated integral.
21. $y=\sqrt{x}$,
$x=4$,
$y=0$
22. $y=\sqrt{x}, \quad x=0$,
$y=2$
26. $y=\sqrt{1-x^{2}}, \quad y=0$

Exer. 28-32: Express the double integral over the indicated region R as an iterated integral, and find its value.
28. $\iint_{R}(x-y) d A$; the triangular region with vertices $(2,9),(2,1),(-2,1)$.
32. $\iint_{R} e^{\frac{x}{y}} d A$; the region bounded by the graphs of $\mathrm{y}=2 \mathrm{x}, \mathrm{y}=-\mathrm{x}$ and $\mathrm{y}=4$.

Exer. 39-42: Sketch the region of integration for the iterated integral.
39. $\int_{-1}^{2} \int_{-\sqrt{4-x^{2}}}^{4-x^{2}} f(x, y) d y d x$
42. $\int_{-2}^{-1} \int_{3 y}^{2 y} f(x, y) d x d y$

Exer. 45-49: Reverse the order of integration, and evaluate the resulting integral.
45. $\int_{0}^{1} \int_{2 x}^{2} e^{y^{2}} d y d x$
49. $\int_{0}^{8} \int_{\sqrt[3]{y}}^{2} \frac{y}{\sqrt{16+x^{7}}} d x d y$

13.2 Area and volume:

Exer. 6-10: Sketch the region bounded by the graphs of the equations, and find its area by using one or more double integrals.
6. $y=\sqrt{x}, \quad y=-x, \quad x=1, \quad x=4$
7. $y^{2}=-x, \quad x-y=4, \quad y=-1, \quad y=2$
10. $x-y=-1,7 x-y=17, \quad 2 x+y=-2$

Exer. 17-19: The iterated double integral represents the volume of a solid under a surface S and over a region R in the $x y$-plane. Describe S and sketch R.
17. $\int_{0}^{4} \int_{-1}^{2} 3 d y d x$
19. $\int_{-2}^{1} \int_{x-1}^{1-x^{2}}\left(x^{2}+y^{2}\right) d y d x$

Exer. 21: Find the volume of the solid that lies under the graph of the equation and over the region in the $x y$-plane bounded by the polygon with the given vertices.
21. $z=4 x^{2}+y^{2} ; \quad(0,0),(0,1),(2,0),(2,1)$

Exer. 23-28: Sketch the solid in the first octant bounded by the graphs of the equations, and find its volume.
23. $x^{2}+z^{2}=9, \quad y=2 x, \quad y=0, \quad z=0$
25. $2 x+y+z=4, \quad x=0 ; \quad y=0, \quad z=0$
28. $z=y^{3}, \quad y=x^{3}, \quad x=0, \quad z=0, \quad y=1$

13.3 Double integrals in polar coordinates:

Exer. 7-10: Use a double integral to find the area of the region that has the indicated shape.
7. One loop of $r=4 \sin 3 \theta$
10. Bounded by $r=3+2 \sin \theta$

Exer. 14-24: Use polar coordinates to evaluate the integral.
14. $\iint_{R} x^{2}\left(x^{2}+y^{2}\right)^{3} d A ; \mathrm{R}$ is bounded by the semicircle $y=\sqrt{1-x^{2}}$ and the x -axis.
15. $\iint_{R} \frac{x^{2}}{x^{2}+y^{2}} d A ; \mathrm{R}$ is the annular region bounded by $x^{2}+y^{2}=a^{2}$ and $x^{2}+y^{2}=b^{2}$ with $0<a<b$.
16. $\iint_{R}(x+y) d A ; \mathrm{R}$ is bounded by the circle $x^{2}+y^{2}=2 y$.
18. $\iint_{R} \sqrt{x^{2}+y^{2}} d A ; \mathrm{R}$ is bounded by the semicircle $y=\sqrt{2 x-x^{2}}$ and the line $\mathrm{y}=\mathrm{x}$.
19. $\int_{-a}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} e^{-\left(x^{2}+y^{2}\right)} d y d x$
24. $\int_{0}^{2} \int_{-\sqrt{2 y-y^{2}}}^{\sqrt{2 y-y^{2}}} x d x d y$

Exer. 25-28: Use polar coordinates to find the volume of the solid that has the shape of Q .
25. Q is the region inside the sphere $x^{2}+y^{2}+z^{2}=25$ and outside the cylinder $x^{2}+y^{2}=9$
28. Q is bounded by the paraboloid $z=4 x^{2}+4 y^{2}$, the cylinder $x^{2}+y^{2}=3 y$, and the plane $z=0$.

13.4 Surface area:

Exer. 1-3: Set up an iterated double integral that can be used to find the surface area of the portion of the graph of the equation that lies over the region R in the xy-plane that has the given boundary. Use symmetry whenever possible.

1. $x^{2}+y^{2}+z^{2}=4$; the square with vertices $(1,1),(1,-1),(-1,1),(-1,-1)$
2. $x^{2}-y^{2}+z^{2}=1$; the square with vertices $(0,1),(1,0),(-1,0),(0,-1)$
3. $36 z^{2}=16 x^{2}+9 y^{2}+144$; the circle with center at the origin and radius 3 .

Exer. 5: Find the surface area of the portion of the graph of the equation that lies over the region R in the $x y$-plane that has the given boundary.
$5 . z=y+\frac{1}{2} x^{2} ;$ the square with vertices $(0,0),(1,0),(1,1),(0,1)$
7. A portion of the plane $\left(\frac{x}{a}\right)+\left(\frac{y}{b}\right)+\left(\frac{z}{c}\right)=1$ is cut out by the cylinder $x^{2}+y^{2}=k^{2}$, where a, b, c and k are positive. Find area of that portion.

