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Chapter 1:
The Foundations: Logic and Proofs
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1.1 Propositional Logic
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Propositional Logic

Propositions

Our discussion begins with an introduction to the basic building blocks of
logic-propositions. A proposition is a declarative sentence (that is, a
sentence that declares a fact) that is either true or false, but not both.

EXAMPLE 1

All the following declarative sentences are propositions.

1
√

2 is a real number.

2 −5 is a positive integer.

3 2 > 4.

4 1 + 2 = 3.

Propositions 1 and 4 are true, whereas 2 and 3 are false.
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Propositional Logic

EXAMPLE 2

Consider the following sentences.

1 What times is it?

2 Read this carefully.

3 x + 1 = 2.

4 x + y = z .

Sentences 1 and 2 are not propositions because they are not declarative
sentences. Sentences 3 and 4 are not propositions because they are neither
true nor false. Note that each of sentences 3 and 4 can be turned into a
proposition if we assign values to the variables.
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Propositional Logic

• We use letters to denote propositional variables (or statement
variables). The conventional letters used for propositional variables are
p, q, r, s, . . .

• The truth value of a proposition is true, denoted by T, if it is a true
proposition, and the truth value of a proposition is false, denoted by F,
if it is a false proposition.

• The area of logic that deals with propositions is called the propositional
calculus or propositional logic.

• We now turn our attention to methods for producing new propositions
from those that we already have. Many mathematical statements are
constructed by combining one or more propositions. New propositions,
called compound propositions, are formed from existing propositions
using logical operators.
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Propositional Logic

DEFINITION 1

Let p be a proposition. The negation of p, denoted by ¬p (also denoted
by p̄), is the statement ”It is not the case that p.”
The proposition ¬p is read ”not p.” The truth value of the negation of p,
¬p, is the opposite of the truth value of p.

EXAMPLE 3

Find the negations of the following propositions:

1 2 = 3;
2 6 ≤ 4;

3 2 ≥ −2;
4 2 < 0;

5 3 > 2.

Solution: The negations are:

1 2 6= 3;
2 6 > 4;

3 2 < −2;
4 2 ≥ 0;

5 3 ≤ 2.
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Propositional Logic

EXAMPLE 4

Find the negations of the following propositions

1 ” n is an integer”.

2 ” n is a negative integer”.

Solution:

1 ” n is not an integer”.

2 ” n is a non negative integer”.

Truth Table

TABLE 1

p ¬p
T F
F T

Table 1 displays the truth table for the negation of a
proposition p. This table has a row for each of the two
possible truth values of a proposition p. Each row shows the
truth value of ¬p corresponding to the truth value of p for
this row.
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Propositional Logic

DEFINITION 2

Let p and q be propositions. The conjunction of p and q, denoted by
p ∧ q, is the proposition ”p and q.” The conjunction p ∧ q is true when
both p and q are true and is false otherwise.

EXAMPLE 5

Find the conjunction of the propositions p and q where p is the
proposition ” 2 < 5” and q is the proposition ” 2 > −6.”
Solution: The conjunction of these propositions, p ∧ q, is the proposition
” 2 < 5 and 2 > −6.”
This conjunction can be expressed more simply as ” −6 6 2 < 5.”
For this conjunction to be true, both conditions given must be true. It is
false, when one or both of these conditions are false.
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Propositional Logic

DEFINITION 3

Let p and q be propositions. The disjunction of p and q, denoted by
p ∨ q, is the proposition ”p or q.” The disjunction p ∨ q is false when both
p and q are false and is true otherwise.

EXAMPLE 6

What is the disjunction of the propositions p and q where p is the
proposition ”−3 ∈ R” and q is the proposition ” −3 ∈ N.”
Solution: The disjunction of p and q, p ∨ q, is the proposition ”−3 ∈ R
or −3 ∈ N”
This proposition is true.
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Propositional Logic

Truth Table

TABLE 2

p q p ∧ q

T T T
T F F
F T F
F F F

Table 2 displays the truth table of
p ∧ q.

TABLE 3

p q p ∨ q

T T T
T F T
F T T
F F F

Table 3 displays the truth table of
p ∨ q.
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Propositional Logic

DEFINITION 4

Let p and q be propositions. The exclusive or of p and q, denoted by
p ⊕ q, is the proposition that is true when exactly one of p and q is true
and is false otherwise.

Conditional Statements

We will discuss several other important ways in which propositions can be
combined.

DEFINITION 5

Let p and q be propositions. The conditional statement p → q is the
proposition ”if p, then q.” The conditional statement p → q is false when
p is true and q is false, and true otherwise. In the conditional statement
p → q, p is called the hypothesis (or antecedent or premise) and q is
called the conclusion (or consequence).
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Propositional Logic

Truth Table

TABLE 4

p q p ⊕ q

T T F
T F T
F T T
F F F

Table 4 displays the truth table of
p ⊕ q.

TABLE 5

p q p → q

T T T
T F F
F T T
F F T

Table 5 displays the truth table of
p → q.
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Propositional Logic

• In the conditional statement p → q, p is called the hypothesis (or
antecedent or premise) and q is called the conclusion (or
consequence).

• The statement p → q is called a conditional statement because p → q
asserts that q is true on the condition that p holds. A conditional
statement is also called an implication.

• the statement p → q is true when both p and q are true and when p is
false (no matter what truth value q has).

• Conditional statements play such an essential role in mathematical
reasoning.

(King Saud University) Discrete Mathematics (151) 14 / 74



Propositional Logic

Terminology is used to express p → q.

”if p, then q” ” p implies q”

”if p, q” ”p only if q”

”p is sufficient for q” ”a sufficient condition for q is p”

”q if p” ”q whenever p”

”q when p” ”q is necessary for p”

”a necessary condition for p is q” ”q follows from p”

”q unless ¬p”
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Propositional Logic

CONVERSE, CONTRAPOSITIVE, AND INVERSE

We can form some new conditional statements starting with a conditional
statement p → q. In particular, there are three related conditional
statements that occur so often that they have special names.

• The proposition q → p is called the converse of p → q.

• The contrapositive of p → q is the proposition ¬q → ¬p.

• The proposition ¬p → ¬q is called the inverse of p → q.

We will see that of these three conditional statements formed from p → q,
only the contrapositive always has the same truth value as p → q.
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Propositional Logic

EXAMPLE 7

What are the contrapositive, the converse, and the inverse of the
conditional statement ”

√
x exist whenever the real x is positive.”?

Solution: Because ”q whenever p” is one of the ways to express the
conditional statement p → q, the original statement can be rewritten as
”If the real x is positive, then

√
x exist”

Consequently, the contrapositive is ”If
√
x does not exist, the real x is not

positive, then”
The converse is ”

√
x exist, then the real x is positive.”

The inverse is ”If the real x is not positive, then
√
x does not exist”

Only the contrapositive is equivalent to the original statement.

(King Saud University) Discrete Mathematics (151) 17 / 74



Propositional Logic

EXAMPLE 7

What are the contrapositive, the converse, and the inverse of the
conditional statement ”

√
x exist whenever the real x is positive.”?

Solution: Because ”q whenever p” is one of the ways to express the
conditional statement p → q, the original statement can be rewritten as
”If the real x is positive, then

√
x exist”

Consequently, the contrapositive is ”If
√
x does not exist, the real x is not

positive, then”
The converse is ”

√
x exist, then the real x is positive.”

The inverse is ”If the real x is not positive, then
√
x does not exist”

Only the contrapositive is equivalent to the original statement.

(King Saud University) Discrete Mathematics (151) 17 / 74



Propositional Logic

BICONDITIONALS

DEFINITION 6

Let p and q be propositions. The biconditional statement p ↔ q is the
proposition ”p if and only if q”. The biconditional statement p ↔ q is
true when p and q have the same truth values, and is false otherwise.
Biconditional statements are also called bi-implications.

Note that the statement p ↔ q is true when both the conditional
statements p → q and q → p are true and is false otherwise. That is why
we use the words ”if and only if” to express this logical connective and
why it is symbolically written by combining the symbols → and ←.
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Propositional Logic

There are some other common ways to express p ↔ q:

• ”p is necessary and sufficient for q”
• ”if p then q, and conversely”
• ”p iff q.”

The last way of expressing the biconditional statement p ↔ q uses the
abbreviation ”iff” for ”if and only if.” Note that p ↔ q has exactly the
same truth value as (p → q) ∧ (q → p) .

Truth Table

TABLE 6

p q p ↔ q

T T T
T F F
F T F
F F T

Table 6 displays the truth table of p ↔ q.
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Propositional Logic

EXAMPLE 8 (10 in book)

Let p be the statement ”You can take the flight,” and let q be the
statement ”You buy a ticket.” Then p ↔ q is the statement ”You can
take the flight if and only if you buy a ticket.”
This statement is true if p and q are either both true or both false, that is,
if you buy a ticket and can take the flight or if you do not buy a ticket and
you cannot take the flight. It is false when p and q have opposite truth
values.
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Propositional Logic

Truth Tables of Compound Propositions

• We have now introduced four important logical connectives:
conjunctions, disjunctions, conditional statements, and biconditional
statements, as well as negations.

• We can use these connectives to build up complicated compound
propositions involving any number of propositional variables.

• We can use truth tables to determine the truth values of these
compound propositions.
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Propositional Logic

EXAMPLE 9 ( 11 in book)

Construct the truth table of the compound proposition (p∨¬q)→ (p∧ q).

TABLE 7 The Truth Table of (p ∨ ¬q)→ (p ∧ q)

p q ¬q p ∨ ¬q p ∧ q (p ∨ ¬q)→ (p ∧ q)

T T F T T T
T F T T F F
F T F F F T
F F T T F F
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1.2 Propositional Equivalences (1.3 in book)
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Propositional Equivalences

Introduction

An important type of step used in a mathematical argument is the
replacement of a statement with another statement with the same truth
value.
Because of this, methods that produce propositions with the same truth
value as a given compound proposition are used extensively in the
construction of mathematical arguments.

DEFINITION 1

• A compound proposition that is always true, no matter what the truth
values of the propositional variables that occur in it, is called a
tautology.

• A compound proposition that is always false is called a contradiction.

• A compound proposition that is neither a tautology nor a contradiction
is called a contingency.
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Propositional Equivalences

Example 1

We can construct examples of tautologies and contradictions using just
one propositional variable.
Consider the truth tables of p ∨ ¬p and p ∧ ¬p. Because p ∨ ¬p is always
true, it is a tautology. Because p ∧ ¬p is always false, it is a contradiction.

Logical Equivalences

Compound propositions that have the same truth values in all possible
cases are called logically equivalent. We can also define this notion as
follows.

DEFINITION 2

The compound propositions p and q are called logically equivalent if
p ↔ q is a tautology.
The notation p ≡ q denotes that p and q are logically equivalent.
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Propositional Equivalences

TABLE 1: Examples of a Tautology and a Contradiction.

TABLE 1

p ¬p p ∨ ¬p p ∧ ¬p
T F T F
F T T F

TABLE 2: De Morgan’s Laws.

TABLE 2

¬(p ∧ q) ≡ ¬p ∨ ¬q
¬(p ∨ q) ≡ ¬p ∧ ¬q
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Propositional Equivalences

Example 2

1 Show that ¬(p ∨ q) and ¬p ∧ ¬q are logically equivalent.

2 Show that ¬(p ∧ q) and ¬p ∨ ¬q are logically equivalent.

Solution: We construct the truth table for these compound propositions
in Table 3.

TABLE 3 The Truth Table

p q p ∨ q ¬(p ∨ q) ¬p ¬q ¬p ∧ ¬q p ∧ q ¬(p ∧ q) ¬p ∨ ¬q
T T T F F F F T F F
T F T F F T F F T T
F T T F T F F F T T
F F F T T T T F T T
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Propositional Equivalences

Example 3

1 Show that p → q and ¬p ∨ q are logically equivalent.

2 Show that p → q and ¬q → ¬p are logically equivalent.

Solution: We construct the truth table for these compound propositions
in Table 4.

TABLE 4 The Truth Table

p q ¬p ¬q ¬p ∨ q p → q ¬q → ¬p
T T F F T T T
T F F T F F F
F T T F T T T
F F T T T T T
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Propositional Equivalences

Example 4

Show that p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r) are logically equivalent.
This is the distributive law of disjunction over conjunction.
Solution: We construct the truth table for these compound propositions
in Table 5.

TABLE 5 The Truth Table

p q r q ∧ r p ∨ (q ∧ r) p ∨ q p ∨ r (p ∨ q) ∧ (p ∨ r)

T T T T T T T T
T T F F T T T T
T F T F T T T T
T F F F T T T T
F T T T T T T T
F T F F F T F F
F F T F F F T F
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Propositional Equivalences

TABLE 6 Logical Equivalences

Equivalence Name

p ∧ T ≡ p, p ∨ F ≡ p Identity laws

p ∨ T ≡ T , p ∧ F ≡ F Domination laws

p ∧ p ≡ p, p ∨ p ≡ p Idempotent laws

¬(¬p) ≡ p Double negation law

p ∧ q ≡ q ∧ p and p ∨ q ≡ q ∨ p Commutative laws

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

Associative laws

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

Distributive laws

¬(p ∧ q) ≡ ¬p ∨ ¬q
¬(p ∨ q) ≡ ¬p ∧ ¬q De Morgan’s Laws

p ∨ (p ∧ q) ≡ p
p ∧ (p ∨ q) ≡ p

Absorption Laws

p ∨ ¬p ≡ T , p ∧ ¬p ≡ F Negation laws
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Propositional Equivalences

Table 7: Logical Equivalences
Involving Conditional Statements.

p → q ≡ ¬p ∨ q

p → q ≡ ¬q → ¬p
p ∨ q ≡ ¬p → q

p ∧ q ≡ ¬(p → ¬q)

¬(p → q) ≡ p ∧ ¬q
(p → q) ∧ (p → r) ≡ p → (q ∧ r)

(p → r) ∧ (q ∧ r) ≡ (p ∨ q)→ r

(p → q) ∨ (p → r) ≡ p → (q ∨ r)

(p → r) ∨ (q → r) ≡ (p ∧ q)→ r

Table 8: Logical Equivalences
Involving Biconditional
Statements.

p ↔ q ≡ (p → q) ∧ (q → p)

p ↔ q ≡ ¬p ↔ ¬q
p ↔ q ≡ (p ∧ q) ∨ (¬p ∧ ¬q)

¬(p ↔ q) ≡ p ↔ ¬q
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Propositional Equivalences

Constructing New Logical Equivalences

Example 5 (6 in book)

Show that ¬(p → q) and p ∧ ¬q are logically equivalent.
Solution: We could use a truth table to show that these compound
propositions are equivalent.
So, we will establish this equivalence by developing a series of logical
equivalences, using one of the equivalences in Table 6 at a time, starting
with ¬(p → q) and ending with p ∧ ¬q.
We have the following equivalences.
¬(p → q ≡ ¬(¬p ∨ q) by Example 3

≡ ¬(¬p) ∧ ¬q by the second De Morgan’s law
≡ p ∧ ¬q by the double negation law
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Propositional Equivalences

Example 6 (7 in book)

Show that ¬(p ∨ (¬p ∧ q)) and ¬p ∧ ¬q are logically equivalent by
developing a series of logical equivalences.
Solution: Solution: We will use one of the equivalences in Table 6 at a
time, starting with ¬(p ∨ (¬p ∧ q)) and ending with ¬p ∧ ¬q.
We have the following equivalences.
¬(p ∨ (¬p ∧ q)) ≡ ¬p ∧¬(¬p ∧ q) by the second De Morgan’s laws

≡ ¬p ∧ [¬(¬p) ∨ ¬q] by the first De Morgan’s laws
≡ ¬p ∧ (p ∨ ¬q) by the double negation law
≡ (¬p ∧ p) ∨ (¬p ∧ ¬q) by the distributive laws
≡ F ∨ (¬p¬q) because ¬p ∨ p ≡ F
≡ (¬p ∧ ¬q) ∨ F by the commutative laws
≡ ¬p ∧ ¬q by the identity laws

Consequently ¬(p ∨ (¬p ∧ q)) and ¬p ∧ ¬q are logically equivalent.

(King Saud University) Discrete Mathematics (151) 33 / 74



Propositional Equivalences

Example 6 (7 in book)

Show that ¬(p ∨ (¬p ∧ q)) and ¬p ∧ ¬q are logically equivalent by
developing a series of logical equivalences.
Solution: Solution: We will use one of the equivalences in Table 6 at a
time, starting with ¬(p ∨ (¬p ∧ q)) and ending with ¬p ∧ ¬q.
We have the following equivalences.
¬(p ∨ (¬p ∧ q)) ≡ ¬p ∧¬(¬p ∧ q) by the second De Morgan’s laws

≡ ¬p ∧ [¬(¬p) ∨ ¬q] by the first De Morgan’s laws
≡ ¬p ∧ (p ∨ ¬q) by the double negation law
≡ (¬p ∧ p) ∨ (¬p ∧ ¬q) by the distributive laws
≡ F ∨ (¬p¬q) because ¬p ∨ p ≡ F
≡ (¬p ∧ ¬q) ∨ F by the commutative laws
≡ ¬p ∧ ¬q by the identity laws

Consequently ¬(p ∨ (¬p ∧ q)) and ¬p ∧ ¬q are logically equivalent.

(King Saud University) Discrete Mathematics (151) 33 / 74



Propositional Equivalences

Example 7 (8 in book)

Show that (p ∧ q)→ (p ∨ q) is a tautology.
Solution: To show that this statement is a tautology, we will use logical
equivalences to demonstrate that it is logically equivalent to T. (Note:
This could also be done using a truth table.)
(p ∧ q)→ (p ∨ q) ≡ ¬(p ∧ q) ∨ (p ∨ q) by Example 3

≡ (¬p ∨ ¬q) ∨ (p ∨ q) by the first De Morgan’s law
≡ (¬p ∨ p) ∨ (¬q ∨ q) by the associative and

commutative laws for disjunction
≡ T ∨ T by Example 1 and commutative

laws for disjunction
≡ T by the domination law
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1.3 Predicates and Quantifiers (1.4 in book)
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Predicates and Quantifiers

Predicates
Statements involving variables, such as ”x > 3”, ”x = y + 3”,
”x + y = z”,

Example 1

Let P(x) denote the statement ”x > 3.” What are the truth values of
P(4) and P(2)?
Solution: We obtain the statement P(4) by setting x = 4 in the
statement ”x > 3.” Hence, P(4), which is the statement ”4 > 3” is true.
However, P(2), which is the statement ”2 > 3,” is false.

Example 2 (3 in book)

Let Q(x , y) denote the statement ”x = y + 3.” What are the truth values
of the propositions Q(1, 2) and Q(3, 0)?
Solution: To obtain Q(1, 2), set x = 1 and y = 2 in the statement
Q(x , y). Hence, Q(1, 2) is the statement ”1 = 2 + 3,” which is false. The
statement Q(3, 0) is the proposition ”3 = 0 + 3,” which is true.
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Predicates and Quantifiers

Example 3 (5 in book)

Let R(x , y , z) denote the statement ”x + y = z”, What are the truth
values of the propositions R(1, 2, 3) and R(0, 0, 1)?
Solution: The proposition R(1, 2, 3) is obtained by setting x = 1, y = 2,
and z = 3 in the statement R(x , y , z). We see that R(1, 2, 3) is the
statement ”1 + 2 = 3”, which is true. Also note that R(0, 0, 1), which is
the statement ”0 + 0 = 1”, is false.
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Predicates and Quantifiers

Quantifiers

DEFINITION 1: THE UNIVERSAL QUANTIFIER

The universal quantification of P(x) is the statement

”P(x) for all values of x in the domain.”

The notation ∀x P(x) denotes the universal quantification of P(x). Here
∀ is called the universal quantifier. We read ∀x P(x) as ”for all x P(x)”
or ”for every x P(x)”. An element for which P(x) is false is called a
counterexample of ∀x P(x).

DEFINITION 2: THE EXISTENTIAL QUANTIFIER

The existential quantification of P(x) is the proposition

”There exists an element x in the domain such that P(x)”.

We use the notation ∃x P(x) for the existential quantification of P(x).
Here ∃ is called the existential quantifier.
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Predicates and Quantifiers

The statement ∀x P(x) is true when P(x) is true for every x and is
false when there is an x for which P(x) is false.

The statement ∃x P(x) is true when there is an x for which P(x) is
true and is false when P(x) is false for every x .

¬ (∃x Q(x)) ≡ ∀x ¬Q(x).

¬ (∀x P(x)) ≡ ∃x ¬P(x).
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Predicates and Quantifiers

Example 4 (8 in book)

Let P(x) be the statement ”x + 1 > x”. What is the truth value of the
quantification ∀x P(x), where the domain consists of all real numbers?
Solution: Because P(x) is true for all real numbers x , the quantification
∀x P(x) is true.

Example 5 (9 in book)

Let Q(x) be the statement ”x < 2.” What is the truth value of the
quantification ∀x Q(x), where the domain consists of all real numbers?
Solution: Q(x) is not true for every real number x , because, for instance,
Q(3) is false. That is, x = 3 is a counterexample for the statement
∀x Q(x). Thus ∀x Q(x) is false.
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Predicates and Quantifiers

Example 6 (10 in book)

Suppose that P(x) is ”x2 > 0.” To show that the statement ∀x P(x) is
false where the universe of discourse consists of all integers, we give a
counterexample. We see that x = 0 is a counterexample because x2 = 0
when x = 0, so that x2 is not greater than 0 when x = 0.

Looking for counterexamples to universally quantified statements is an
important activity in the study of mathematics, as we will see in
subsequent sections.
When all the elements in the domain can be listed–say,x1, x2, ..., xn–it
follows that the universal quantification ∀x P(x) is the same as the
conjunction, P(x1) ∧ P(x2) ∧ · · · ∧ P(xn), because this conjunction is true
if and only if P(x1),P(x2), . . . ,P(xn) are all true.
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Predicates and Quantifiers

Example 7 (11 in book)

What is the truth value of ∀x P(x), where P(x) is the statement
”x2 < 10” and the domain consists of the positive integers not exceeding
4?
Solution: The statement ∀x P(x) is the same as the conjunction
P(1) ∧ P(2) ∧ P(3) ∧ P(4), because the domain consists of the integers
1, 2, 3, and 4. Because P(4), which is the statement ”42 < 10,” is false, it
follows that ∀x P(x) is false.
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Predicates and Quantifiers

Example 8 (13 in book)

What is the truth value of ∀x (x2 ≥ x) if the domain consists of all real
numbers? What is the truth value of this statement if the domain consists
of all integers?
Solution: The universal quantification ∀x (x2 ≥ x), where the domain

consists of all real numbers, is false. For example,
(
1
2

)2 6≥ 1
2 . Note that

x2 ≥ x if and only if x2 − x = x(x − 1) ≥ 0. Consequently, x2 ≥ x if and
only if x ≤ 0 or x ≥ 1. It follows that ∀x (x2 ≥ x) is false if the domain
consists of all real numbers (because the inequality is false for all real
numbers x with 0 < x < 1). However, if the domain consists of the
integers, ∀x (x2 ≥ x) is true, because there are no integers x with
0 < x < 1.
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Predicates and Quantifiers

TABLE 1 De Morgan’s Laws for Quantifiers. (2 in book)

Negation
Equivalent
Statement

When Is
Negation True?

When False?

¬(∃x P(x)) ∀x ¬P(x)
For every x ,
P(x) is false.

There is an x for
P(x) which is true.

¬(∀x P(x)) ∃x ¬P(x)
There is an x
for which
P(x) is false.

P(x) is true
for every x .

Example 9 (21 in book)

What are the negations of the statements ∀x (x2 > x) and ∃x (x2 = 2)?
Solution: The negation of ∀x (x2 > x) is the statement ¬∀x (x2 > x),
which is equivalent to ∃x ¬(x2 > x). This can be rewritten as
∃x (x2 ≤ x).
The negation of ∃x (x2 = 2) is the statement ¬∃x (x2 = 2), which is
equivalent to ∀x ¬(x2 = 2). This can be rewritten as ∀x (x2 6= 2).
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Predicates and Quantifiers

Example 10 (22 in book)

Show that ¬∀x (P(x)→ Q(x)) and ∃x (P(x) ∧ ¬Q(x)) are logically
equivalent.
Solution: By De Morgans law for universal quantifiers, we know that
¬∀x (P(x)→ Q(x)) and ∃x (¬(P(x)→ Q(x))) are logically equivalent.
By the fifth logical equivalence in Table 7 in Section 1.2 (1.3 in book), we
know that ¬(P(x)→ Q(x)) and P(x) ∧ ¬Q(x) are logically equivalent for
every x . Because we can substitute one logically equivalent expression for
another in a logical equivalence, it follows that ¬∀x (P(x)→ Q(x)) and
∃x (P(x) ∧ ¬Q(x)) are logically equivalent.
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1.4 Introduction to Proofs (1.7 in book)
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Introduction to Proofs

Methods of Proving Theorems
Proving mathematical theorems can be difficult. To construct proofs we
need all available ammunition, including a powerful battery of different
proof methods. These methods provide the overall approach and strategy
of proofs. Understanding these methods is a key component of learning
how to read and construct mathematical proofs. One we have chosen a
proof method, we use axioms, definitions of terms, previously proved
results, and rules of inference to complete the proof.
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Introduction to Proofs

Direct Proofs
A direct proof of a conditional statement p → q is constructed when the
first step is the assumption that p is true; subsequent steps are
constructed using rules of inference, with the final step showing that q
must also be true.
A direct proof shows that a conditional statement p → q is true by
showing that if p is true, then q must also be true, so that the
combination p true and q false never occurs. In a direct proof, we assume
that p is true and use axioms, definitions, and previously proven theorems,
together with rules of inference, to show that q must also be true.

DEFINITION 1

The integer n is even if there exists an integer k such that n = 2k, and n
is odd if there exists an integer k such that n = 2k + 1. (Note that every
integer is either even or odd, and no integer is both even and odd.)
Two integers have the same parity when both are even or both are odd;
they have opposite parity when one is even and the other is odd.
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Introduction to Proofs

Example 1

Give a direct proof of the theorem ”If n is an odd integer, then n2 is odd.”
Solution: Note that this theorem states ∀n (P(n)→ Q(n)), where P(n) is
”n is an odd integer” and Q(n) is ”n2 is odd.” To begin a direct proof of
this theorem, we assume that the hypothesis of this conditional statement
is true, namely, we assume that n is odd. By the definition of an odd
integer, it follows that n = 2k + 1, where k is some integer. We want to
show that n2 is also odd. We can square both sides of the equation
n = 2k + 1 to obtain a new equation that expresses n2. When we do this,
we find that n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1. We can
conclude that n2 is an odd integer (it is one more than twice an integer).
Consequently, we have proved that if n is an odd integer, then n2 is an
odd integer.
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Introduction to Proofs

Example 2

Give a direct proof that if m and n are both perfect squares, then nm is
also a perfect square. (An integer a is a perfect square if there is an
integer b such that a = b2.)
Solution: To produce a direct proof of this theorem, we assume that the
hypothesis of this conditional statement is true, namely, we assume that m
and n are both perfect squares. By the definition of a perfect square, it
follows that there are integers s and t such that m = s2 and n = t2. The
goal of the proof is to show that mn must also be a perfect square when
m and n are; looking ahead we see how we can show this by substituting
s2 for m and t2 for n into mn. This tells us that mn = s2t2. Hence,
mn = s2t2 = (ss)(tt) = (st)(st) = (st)2, using commutativity and
associativity of multiplication. By the definition of perfect square, it
follows that mn is also a perfect square, because it is the square of st,
which is an integer. We have proved that if m and n are both perfect
squares, then mn is also a perfect square.
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Introduction to Proofs

Proof by Contraposition
We need other methods of proving theorems of the form
∀x (P(x)→ Q(x)). Proofs of theorems of this type that are not direct
proofs, that is, that do not start with the premises and end with the
conclusion, are called indirect proofs.
An extremely useful type of indirect proof is known as proof by
contraposition. Proofs by contraposition make use of the fact that the
conditional statement p → q is equivalent to its contrapositive, ¬q → ¬p.
This means that the conditional statement p → q can be proved by
showing that its contrapositive, ¬q → ¬p, is true. In a proof by
contraposition of p → q, we take ¬q as a premise, and using axioms,
definitions, and previously proven theorems, together with rules of
inference, we show that ¬p must follow.
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Introduction to Proofs

Example 3

Prove that if n is an integer and 3n + 2 is odd, then n is odd.
Solution: We first attempt a direct proof. To construct a direct proof, we first
assume that 3n + 2 is an odd integer. This means that 3n + 2 = 2k + 1 for some
integer k. Can we use this fact to show that n is odd? We see that 3n + 1 = 2k,
but there does not seem to be any direct way to conclude that n is odd. Because
our attempt at a direct proof failed, we next try a proof by contraposition. The
first step in a proof by contraposition is to assume that the conclusion of the
conditional statement ”If 3n + 2 is odd, then n is odd” is false; namely, assume
that n is even. Then, by the definition of an even integer, n = 2k for some integer
k . Substituting 2k for n, we find that 3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1).
This tells us that 3n + 2 is even (because it is a multiple of 2), and therefore not
odd. This is the negation of the premise of the theorem. Because the negation of
the conclusion of the conditional statement implies that the hypothesis is false,
the original conditional statement is true. Our proof by contraposition succeeded;
we have proved the theorem ”If 3n + 2 is odd, then n is odd.”
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Introduction to Proofs

Example 4

Prove that if n = ab, where a and b are positive integers, then a ≤
√
n or b ≤

√
n.

Solution: Because there is no obvious way of showing that a ≤
√
n or b ≤

√
n

directly from the equation n = ab, where a and b are positive integers, we
attempt a proof by contraposition.
The first step in a proof by contraposition is to assume that the conclusion of the
conditional statement ”If n = ab, where a and b are positive integers, then
a ≤
√
n or b ≤

√
n” is false. That is, we assume that the statement

(a ≤
√
n) ∨ (b ≤

√
n) is false. Using the meaning of disjunction together with De

Morgans law, we see that this implies that both a ≤
√
n and b ≤

√
n are false.

This implies that a >
√
n and b >

√
n. We can multiply these inequalities

together (using the fact that if 0 < s < t and 0 < u < v , then su < tv) to obtain
ab >

√
n
√
n = n. This shows that ab 6= n, which contradicts the statement

n = ab. Because the negation of the conclusion of the conditional statement
implies that the hypothesis is false, the original conditional statement is true. Our
proof by contraposition succeeded; we have proved that if n = ab, where a and b
are positive integers, then a ≤

√
n or b ≤

√
n.
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Introduction to Proofs

Example 5 (8 in book)

Prove that if n is an integer and n2 is odd, then n is odd.
Solution: We first attempt a direct proof. Suppose that n is an integer and n2 is
odd. Then, there exists an integer k such that n2 = 2k + 1. Can we use this
information to show that n is odd?
There seems to be no obvious approach to show that n is odd because solving for
n produces the equation n = ±

√
2k + 1, which is not terribly useful. Because this

attempt to use a direct proof did not give result, we next attempt a proof by
contraposition. We take as our hypothesis the statement that n is not odd.
Because every integer is odd or even, this means that n is even. This implies that
there exists an integer k such that n = 2k . To prove the theorem, we need to
show that this hypothesis implies the conclusion that n2 is not odd, that is, that
n2 is even. Can we use the equation n = 2k to achieve this? By squaring both
sides of this equation, we obtain n2 = 4k2 = 2(2k2), which implies that n2 is also
even because n2 = 2t , where t = 2k2. We have proved that if n is an integer and
n2 is odd, then n is odd. Our attempt to find a proof by contraposition succeeded.
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show that this hypothesis implies the conclusion that n2 is not odd, that is, that
n2 is even. Can we use the equation n = 2k to achieve this? By squaring both
sides of this equation, we obtain n2 = 4k2 = 2(2k2), which implies that n2 is also
even because n2 = 2t , where t = 2k2. We have proved that if n is an integer and
n2 is odd, then n is odd. Our attempt to find a proof by contraposition succeeded.
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Proofs by Contradiction
Suppose we want to prove that a statement p is true. Furthermore,
suppose that we can find a contradiction q such that ¬p → q is true.
Because q is false, but ¬p → q is true, we can conclude that ¬p is false,
which means that p is true. How can we find a contradiction q that might
help us prove that p is true in this way?
Because the statement r ∧ ¬r is a contradiction whenever r is a
proposition, we can prove that p is true if we can show that
¬p → (r ∧ ¬r) is true for some proposition r . Proofs of this type are
called proofs by contradiction. Because a proof by contradiction does not
prove a result directly, it is another type of indirect proof.

(King Saud University) Discrete Mathematics (151) 55 / 74



Introduction to Proofs

Example 6 (9 in book)

Show that at least four of any 22 days must fall on the same day of the
week.
Solution: Let p be the proposition ”At least four of 22 chosen days fall on
the same day of the week”. Suppose that ¬p is true. This means that at
most three of the 22 days fall on the same day of the week. Because there
are seven days of the week, this implies that at most 21 days could have
been chosen, as for each of the days of the week, at most three of the
chosen days could fall on that day. This contradicts the premise that we
have 22 days under consideration. That is, if r is the statement that 22
days are chosen, then we have shown that ¬p → (r ∧ ¬r). Consequently,
we know that p is true. We have proved that at least four of 22 chosen
days fall on the same day of the week.
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Example 7 (10 in book)

Prove that
√

2 is irrational by giving a proof by contradiction.
Solution: Let p be the proposition ”

√
2 is irrational.” To start a proof by

contradiction, we supposethat ¬p is true. Note that ¬p is the statement
”It is not the case that

√
2 is irrational,” which says that

√
2 is rational.

We will show that assuming that ¬p is true leads to a contradiction. If
√

2
is rational, there exist integers a and b with

√
2 = a

b , where b 6= 0 and a
and b have no common factors (so that the fraction a

b is in lowest terms.)
(Here, we are using the fact that every rational number can be written in
lowest terms.) Because

√
2 = a

b , when both sides of this equation are

squared, it follows that 2 = a2

b2
. Hence, 2b2 = a2. By the definition of an

even integer it follows that a2 is even. We next use the fact that if a2 is
even, a must also be even.
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Furthermore, because a is even, by the definition of an even integer,
a = 2c for some integer c . Thus, 2b2 = 4c2. Dividing both sides of this
equation by 2 gives b2 = 2c2. By the definition of even, this means that
b2 is even. Again using the fact that if the square of an integer is even,
then the integer itself must be even, we conclude that b must be even as
well. We have now shown that the assumption of ¬p leads to the equation√

2 = a
b , where a and b have no common factors, but both a and b are

even, that is, 2 divides both a and b. Note that the statement that√
2 = a

b , where a and b have no common factors, means, in particular,
that 2 does not divide both a and b. Because our assumption of ¬p leads
to the contradiction that 2 divides both a and b and 2 does not divide
both a and b, ¬p must be false. That is, the statement p, ”

√
2 is

irrational,” is true. We have proved that
√

2 is irrational.
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Example 8 (11 in book)

Give a proof by contradiction of the theorem ”If 3n + 2 is odd, then n is
odd.”
Solution: Let p be ”3n + 2 is odd” and q be ”n is odd.” To construct a
proof by contradiction, assume that both p and ¬q are true. That is,
assume that 3n + 2 is odd and that n is not odd. Because n is not odd, we
know that it is even. Because n is even, there is an integer k such that
n = 2k . This implies that 3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1).
Because 3n + 2 is 2t , where t = 3k + 1, 3n + 2 is even. Note that the
statement ”3n + 2 is even” is equivalent to the statement ¬p, because an
integer is even if and only if it is not odd. Because both p and ¬p are
true, we have a contradiction. This completes the proof by contradiction,
proving that if 3n + 2 is odd, then n is odd.
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Note that we can also prove by contradiction that p → q is true by
assuming that p and ¬q are true, and showing that q must be also be
true. This implies that ¬q and q are both true, a contradiction. This
observation tells us that we can turn a direct proof into a proof by
contradiction.

Proofs of Equivalence
To prove a theorem that is a biconditional statement, that is, a statement
of the form p ↔ q, we show that p → q and q → p are both true. The
validity of this approach is based on the tautology
(p ↔ q)↔ (p → q) ∧ (q → p).
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Example 9 (12 in book)

Prove the theorem ”If n is an integer, then n is odd if and only if n2 is
odd.”
Solution: This theorem has the form ”p if and only if q,” where p is ”n is
odd” and q is ”n2 is odd.” (As usual, we do not explicitly deal with the
universal quantification.) To prove this theorem, we need to show that
p → q and q → p are true. We have already shown (in Example 1) that
p → q is true and (in Example 5 (8 in book)) that q → p is true. Because
we have shown that both p → q and q → p are true, we have shown that
the theorem is true.
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Proof Methods and Strategy

Introduction

In Section 1.4 (1.7 in book) we introduced many methods of proof
and illustrated how each method can be used. In this section we
continue this effort. We will introduce several other commonly used
proof methods, including the method of proving a theorem by
considering different cases separately. We will also discuss proofs
where we prove the existence of objects with desired properties.

In Section 1.4 (1.7 in book) we briefly discussed the strategy behind
constructing proofs. This strategy includes selecting a proof method
and then successfully constructing an argument step by step, based
on this method.
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Introduction

In this section, after we have developed a versatile arsenal of proof
methods, we will study some aspects of the art and science of proofs.

We will provide advice on how to find a proof of a theorem. We will
describe some tricks of the trade, including how proofs can be found
by working backward and by adapting existing proofs.

When mathematicians work, they formulate conjectures and attempt
to prove or disprove them.
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Exhaustive Proofs

Some theorems can be proved by examining a relatively small number
of examples. Such proofs are called exhaustive proofs, or proofs by
exhaustion because these proofs proceed by exhausting all
possibilities.

An exhaustive proof is a special type of proof by cases where each
case involves checking a single example.

We now provide some illustrations of exhaustive proofs.
To prove a conditional statement of the form (p1 ∨ p2 ∨ · · · ∨ pn)→ q
the tautology
[(p1 ∨ p2 ∨ · · · ∨ pn)→ q]↔ [(p1 → q) ∧ (p2 → q) ∧ · · · ∨ (pn → q)]
can be used as a rule of inference.
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Example 1

Prove that (n + 1)3 ≥ 3n if n is a positive integer with n ≤ 4.
Solution: We use a proof by exhaustion. We only need verify the
inequality (n + 1)3 ≥ 3n when n = 1, 2, 3, and 4.
For n = 1, we have (n + 1)3 = 23 = 8 and 3n = 31 = 3;
for n = 2, we have (n + 1)3 = 33 = 27 and 3n = 32 = 9;
for n = 3, we have (n + 1)3 = 43 = 64 and 3n = 33 = 27;
and for n = 4, we have (n + 1)4 = 54 = 625 and 3n = 34 = 81.
In each of these four cases, we see that (n + 1)3 ≥ 3n. We have used the
method of exhaustion to prove that (n + 1)3 ≥ 3n if n is a positive integer
with n ≤ 4.
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Example 2

Prove that the only consecutive positive integers not exceeding 100 that
are perfect powers are 8 and 9. (An integer is a perfect power if it equals
na, where a is an integer greater than 1.)
Solution: We use a proof by exhaustion. In particular, we can prove this
fact by examining positive integers n not exceeding 100, first checking
whether n is a perfect power, and if it is, checking whether n + 1 is also a
perfect power. A quicker way to do this is simply to look at all perfect
powers not exceeding 100 and checking whether the next largest integer is
also a perfect power. The squares of positive integers not exceeding 100
are 1, 4, 9, 16, 25, 36, 49, 64, 81, and 100. The cubes of positive integers
not exceeding 100 are 1, 8, 27, and 64. The fourth powers of positive
integers not exceeding 100 are 1, 16, and 81.
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The fifth powers of positive integers not exceeding 100 are 1 and 32. The
sixth powers of positive integers not exceeding 100 are 1 and 64. There
are no powers of positive integers higher than the sixth power not
exceeding 100, other than 1.
Looking at this list of perfect powers not exceeding 100, we see that n = 8
is the only perfect power n for which n + 1 is also a perfect power. That
is, 23 = 8 and 32 = 9 are the only two consecutive perfect powers not
exceeding 100.
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Proof by Cases

A proof by cases must cover all possible cases that arise in a theorem.

We illustrate proof by cases with a couple of examples. In each
example, you should check that all possible cases are covered.

Example 3

Prove that if n is an integer, then n2 ≥ n.
Solution: We can prove that n2 ≥ n for every integer by considering three
cases, when n = 0, when n ≥ 1, and when n ≤ −1. We split the proof into
three cases because it is straightforward to prove the result by considering
zero, positive integers, and negative integers separately.
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Case (i): When n = 0, because 02 = 0, we see that 02 ≥ 0. It follows
that n2 ≥ n is true in this case.

Case (ii): When n ≥ 1, when we multiply both sides of the inequality
n ≥ 1 by the positive integer n, we obtain n.n ≥ n.1. This implies
that n2 ≥ n for n ≥ 1.

Case (iii): In this case n ≤ −1. However, n2 ≥ 0. It follows that
n2 ≥ n.

Because the inequality n2 ≥ n holds in all three cases, we can conclude
that if n is an integer, then n2 ≥ n.
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Example 4

Use a proof by cases to show that |xy | = |x ||y |, where x and y are real
numbers. (Recall that |a|, the absolute value of a, equals a when a ≥ 0
and equals −a when a ≤ 0.)
Solution: In our proof of this theorem, we remove absolute values using
the fact that |a| = a when a ≥ 0 and |a| = −a when a < 0. Because both
|x | and |y | occur in our formula, we will need four cases: (i) x and y both
nonnegative, (ii) x nonnegative and y is negative, (iii) x negative and y
nonnegative, and (iv) x negative and y negative. We denote by p1, p2, p3,
and p4, the proposition stating the assumption for each of these four
cases, respectively.
(Note that we can remove the absolute value signs by making the
appropriate choice of signs within each case.)

(King Saud University) Discrete Mathematics (151) 71 / 74



Proof Methods and Strategy

Example 4

Use a proof by cases to show that |xy | = |x ||y |, where x and y are real
numbers. (Recall that |a|, the absolute value of a, equals a when a ≥ 0
and equals −a when a ≤ 0.)
Solution: In our proof of this theorem, we remove absolute values using
the fact that |a| = a when a ≥ 0 and |a| = −a when a < 0. Because both
|x | and |y | occur in our formula, we will need four cases: (i) x and y both
nonnegative, (ii) x nonnegative and y is negative, (iii) x negative and y
nonnegative, and (iv) x negative and y negative. We denote by p1, p2, p3,
and p4, the proposition stating the assumption for each of these four
cases, respectively.
(Note that we can remove the absolute value signs by making the
appropriate choice of signs within each case.)

(King Saud University) Discrete Mathematics (151) 71 / 74



Proof Methods and Strategy

Case (i): We see that p1 → q because xy ≥ 0 when x ≥ 0 and y ≥ 0,
so that |xy | = xy = |x ||y |.
To see that p2 → q, note that if x ≥ 0 and y < 0, then xy ≤ 0, so
that |xy | = −xy = x(−y) = |x ||y |. (Here, because y < 0, we have
|y | = −y .)

Case (iii): To see that p3 → q, we follow the same reasoning as the
previous case with the roles of x and y reversed.

Case (iv): To see that p4 → q, note that when x < 0 and y < 0, it
follows that xy > 0. Hence, |xy | = xy = (−x)(−y) = |x ||y |.

Because |xy | = |x ||y | holds in each of the four cases and these cases
exhaust all possibilities, we can conclude that |xy | = |x ||y |, whenever x
and y are real numbers.
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Example 5 (7 in book)

Show that if x and y are integers and both xy and x + y are even, then
both x and y are even.
Solution: We will use proof by contraposition, the notion of without loss
of generality, and proof by cases. First, suppose that x and y are not both
even. That is, assume that x is odd or that y is odd (or both). Without
loss of generality, we assume that x is odd, so that x = 2m + 1 for some
integer m.
To complete the proof, we need to show that xy is odd or x + y is odd.
Consider two cases: (i) y even, and (ii) y odd.
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In (i), y = 2n for some integer n, so that
x + y = (2m + 1) + 2n = 2(m + n) + 1 is odd.

In (ii), y = 2n + 1 for some integer n, so that
xy = (2m + 1)(2n + 1) = 4mn + 2m + 2n + 1 = 2(2mn + m + n) + 1
is odd.

This completes the proof by contraposition. (Note that our use of without
loss of generality within the proof is justified because the proof when y is
odd can be obtained by simply interchanging the roles of x and y in the
proof we have given.)
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