EXERCISE SHEET-2

1) Determine whether the following sets are linearly independent or dependent.
(i) $f_{1}(x)=1-2 x, f_{2}(x)=x^{2}, f_{3}(x)=1+2 x, \quad-\infty<x<\infty$.
(ii) $f_{1}(x)=\sec ^{2} x, f_{2}(x)=\tan ^{2} x, f_{3}(x)=2, \quad-\infty<x<\infty$.
(iii) $f_{1}(x)=\sin x, f_{2}(x)=\cos x, f_{3}(x)=\sin \left(\frac{\pi}{4}+x\right), \quad-\infty<x<\infty$.
(iv) $f_{1}(x)=e^{x}, f_{2}(x)=\sinh x, f_{3}(x)=e^{-x}, \quad-\infty<x<\infty$.
(v) $f_{1}(x)=\ln x, f_{2}(x)=e^{x}, f_{3}(x)=x, \quad x>0$.
(vi) $f_{1}(x)=\sin x, f_{2}(x)=\cos x, f_{3}(x)=e^{x}, \quad-\infty<x<\infty$.

Ans: (i) LI (ii) LD (iii) LD (iv) LD (v) LI (vi) LI
2) In the following you are given one solution y_{1} of the second order differential equation, find the second solution and hence the general solution.
(i) $y_{1}=x^{-\frac{1}{2}} \cos 2 x, x^{2} y^{\prime \prime}+x y^{\prime}+\left(4 x^{2}+\frac{1}{4}\right) y=0, x>0$.
(ii) $y_{1}=\ln x, x^{2} y_{\prime \prime \prime}^{\prime \prime}+x y^{\prime}=0, x>0$.
(iii) $y_{1}=e^{\sqrt{x}}, x y^{\prime \prime}+\frac{1}{2} y^{\prime}-\frac{1}{4} y=0, x>0$.
(iv) $y_{1}=x^{-\frac{3}{2}}, 4 x^{2} y^{\prime \prime}+4 x y^{\prime}-9 y=0, x>0$.

Ans: (i) $x^{-\frac{1}{2}} \sin 2 x$ (ii) 1 (iii) $e^{-\sqrt{x}}$ (iv) $x^{\frac{3}{2}}$
2) In the following you are given two linearly independent solutions y_{1}, y_{2} of the homogeneous second order differential equation, find differential equation.
(i) $y_{1}=\cos (2 \ln x), y_{2}=\sin (2 \ln x), x>0$
(ii) $y_{1}=x, y_{2}=x \ln x, x>0$
(iii) $y_{1}=e^{-x} \cos (\ln x), y_{2}=e^{-x} \sin (\ln x), x>0$

Ans: (i) $x^{2} y^{\prime \prime}+x y^{\prime}+4 y=0$ (ii) $x^{2} y^{\prime \prime}-x y^{\prime}+y=0$ (iii) $x^{2} y^{\prime \prime}+3 x y^{\prime}+2 y=0$

