King Saud University, College of Sciences Mathematical Department.

Mid-Term1 /S1/2015
Full Mark:25. Time 1H30mn
02/01/1437

Question $1[4,4]$. a) Find and sketch the largest region of the $x y$-plane for which the initial value problem

$$
\left\{\begin{array}{c}
\left(x^{2}+y^{2}\right) \frac{d y}{d x}=x \sqrt{y-1} \\
y(-2)=4
\end{array}\right.
$$

has a unique solution.
b) Find the solution of the differential equation:

$$
\frac{d y}{d x}(y-1) \sqrt{x^{2}+1}+x^{3}+x=y\left(x^{3}+x\right) ; y \neq 1
$$

Question $2[4,4]$. a) Solve the following differential equation

$$
\left(3 x y-x+y^{2}\right)+\left(x^{2}+x y\right) \frac{d y}{d x}=0 ; x>0, x+y \neq 0 .
$$

b) Find the solution of the initial value problem

$$
\left\{\begin{array}{cc}
{\left[x \cos ^{2}\left(\frac{y}{x}\right)-y\right] d x+x d y=0} & ; x>0 \\
y(1)=\frac{\pi}{4}
\end{array}\right.
$$

Question $3[4]$. Find the general solution of the differential equation

$$
y^{3} \frac{d y}{d x}+x y^{4}=x e^{-x^{2}} \quad ; x>0, y \neq 0
$$

Question 5[5]. Find the family of orthogonal trajectories for the family of curves

$$
y=e^{C \sin x} ; 0<x<\frac{\pi}{2}
$$

where C is an arbitrary constant such that $C \neq 0$.

