MID TERM EXAMINATION, SEMESTER I, 1442 DEPARTMENT OF MATHEMATICS, COLLEGE OF SCIENCE KING SAUD UNIVERSITY
 MATH: 107 FULL MARK: 30 TIME: 2 HOURS

[N. B.: Marks: Q1. [4]; Q2. [5+3]; Q3. [4+4]; Q4. [2+2]; Q5. [3+3]]
Q1. Solve the system of linear equations by Gauss-Jordan elimination:

$$
\begin{array}{ll}
2 x_{1}+2 x_{2}-2 x_{3} & =4 \\
3 x_{1}+5 x_{2}+x_{3} & =-8 \\
-4 x_{1}-7 x_{2}-2 x_{3} & =13
\end{array}
$$

Q2. Consider the following system of linear equations

$$
\begin{aligned}
x+y+2 z & =0 \\
-x+3 y-z & =1 \\
-x+y & =2
\end{aligned}
$$

(a) Find the inverse of the matrix A of the coefficients of the above system by elementary matrix method.
(b) Use A^{-1} to solve the above system.

Q3. (a) Let

$$
A=\left[\begin{array}{ccc}
0 & -1 & -2 \\
1 & 2 & 1 \\
0 & 0 & 3
\end{array}\right]
$$

Find values of λ such that the matrix $A-\lambda I$ is not invertible, where I is the 3×3 identity matrix.
(b) Use Cramer's Rule to solve the linear system:

$$
\begin{array}{cl}
-x+2 y-3 z & =1 \\
2 x+z & =0 \\
3 x-4 y+4 z & =2
\end{array}
$$

Q4. (a) Find the value of m so that the vector $\langle 2,1, m\rangle$ is orthogonal to the sum of the vectors $\langle 1,-1,2\rangle$ and $\langle 3,2,1\rangle$.
(b) The magnitude and direction of a constant force are given by $\vec{a}=4 \vec{i}+7 \vec{j}+4 \vec{k}$. Find the work done if the point of application of the force moves along the line of action from $P(1,1,1)$ to $Q(3,5,4)$.

Q5. (a) Find parametric equations of the line l through the point $P(1,3,0)$ and perpendicular to the vectors $\vec{u}=-\vec{i}-\vec{k}$ and $\vec{v}=2 \vec{i}+\vec{j}+4 \vec{k}$.
(b) Find the equation of the plane through the points $P(1,0,-2)$ and $Q(0,-2,0)$ and containing the vector $\vec{a}=3 \vec{i}-\vec{j}+2 \vec{k}$.

