MID TERM EXAMINATION, SEMESTER I, 1442 DEPARTMENT OF MATHEMATICS, COLLEGE OF SCIENCE KING SAUD UNIVERSITY MATH: 107 FULL MARK: 30 TIME: 2 HOURS

[N. B.: Marks: Q1. [4]; Q2. [5+3]; Q3. [4+4]; Q4. [2+2]; Q5. [3+3]] **Q1**. Solve the system of linear equations by Gauss-Jordan elimination:

$$2x_1 + 2x_2 - 2x_3 = 4$$

$$3x_1 + 5x_2 + x_3 = -8$$

$$-4x_1 - 7x_2 - 2x_3 = 13$$

Q2. Consider the following system of linear equations

$$x + y + 2z = 0$$

$$-x + 3y - z = 1$$

$$-x + y = 2$$

(a) Find the inverse of the matrix A of the coefficients of the above system by elementary matrix method.

(b) Use A^{-1} to solve the above system.

Q3. (a) Let

$$A = \begin{bmatrix} 0 & -1 & -2 \\ 1 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix}$$

Find values of λ such that the matrix $A - \lambda I$ is *not* invertible, where I is the 3×3 identity matrix. (b) Use Cramer's Rule to solve the linear system:

-x + 2y - 3z = 12x + z = 03x - 4y + 4z = 2

Q4. (a) Find the value of m so that the vector $\langle 2, 1, m \rangle$ is orthogonal to the sum of the vectors $\langle 1, -1, 2 \rangle$ and $\langle 3, 2, 1 \rangle$.

(b) The magnitude and direction of a constant force are given by $\vec{a} = 4\vec{i} + 7\vec{j} + 4\vec{k}$. Find the work done if the point of application of the force moves along the line of action from P(1, 1, 1) to Q(3, 5, 4).

Q5. (a) Find parametric equations of the line *l* through the point P(1,3,0) and perpendicular to the vectors $\vec{u} = -\vec{i} - \vec{k}$ and $\vec{v} = 2\vec{i} + \vec{j} + 4\vec{k}$.

(b) Find the equation of the plane through the points P(1, 0, -2) and Q(0, -2, 0) and containing the vector $\vec{a} = 3\vec{i} - \vec{j} + 2\vec{k}$.