King Saud University
College of Science
Department of Mathematics

Final Exam Math244 Summer Semester 1439/1440H Duration: 3 hr.

Calculators are not allowed

Question 1: [3+2+2 Marks]

$$x_1 + x_2 - x_3 = 1$$

(a) Let $2x_1 + 3x_2 + \alpha x_3 = 3$ be a given system of linear equations. $x_1 + \alpha x_2 + 3x_3 = 2$

For what values of α does the system have

- (i) a unique solution (ii) infinitely many solutions (iii) no solution?
- (b) The matrix A satisfies $A^3 + 4A^2 2A + 2I = 0$. Show that A is invertible.
- (c) Find $3(adjA)^{-1} + A$ where A is a matrix of size 4×4 such that |A| = 3.

Question 2: [3+3+3 Marks]

(a) Determine whether the following vectors span \mathbb{R}^3 .

$$v_1 = (1, 4, -1), v_2 = (5, -2, 9), v_3 = (2, -3, 5), v_4 = (3, 1, 4)$$

(b) Given the inner product space $(\mathbb{R}^2,<,>)$ where

$$<(x_1,y_1),(x_2,y_2)>=2x_1x_2+y_1y_2$$
, and $u=(1,2),v=(1,3)$.

Verify that the Cauchy-Schwarz inequality holds.

(c) Given the inner product space $(\mathbb{R}^2,<,>)$ where

$$<(x_1, y_1), (x_2, y_2)> = \alpha x_1 x_2 + \beta y_1 y_2$$

Find the values of α and β so that $B = \{v_1 = (-1, \sqrt{3}), v_2 = (1, \sqrt{3})\}$

is an orthonormal basis for \mathbb{R}^2 .

Question 3: [4+4+6 Marks]

- (a) (i) Show that $B = \{v_1 = (1,0,1), v_2 = (1,1,1), v_3 = (1,1,0)\}$ is a basis for \mathbb{R}^3 .
 - (ii) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation such that

$$T(v_1) = (1,-1), T(v_2) = (1,2), T(v_3) = (1,1)$$

Find a formula for $T(x_1, x_2, x_3)$.

(b) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation such that

$$\begin{bmatrix} T \end{bmatrix}_B^C = \begin{bmatrix} -1 & -1 \\ 0 & 2 \\ 1 & 2 \end{bmatrix}$$

is the matrix for T with respect to the ordered bases

$$B = \{v_1 = (0,1), v_2 = (1,2)\} \quad \text{and} \quad C = \{w_1 = (1,-1,0), w_2 = (0,1,0), w_3 = (0,1,1)\}.$$

Find a formula for T(x, y).

- (c) Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be the linear transformation given by the formula $T(x_1, x_2, x_3, x_4) = (x_1 x_3 + 2x_4, -2x_1 + x_2 + 2x_3, x_2 + 4x_4)$
 - (i) Find a basis for the kernel of T. (ii) Find a basis for the range of T.

Question 4: [7+3 Marks]

(a) Let
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 0 \\ 1 & -2 & 1 \end{bmatrix}$$
.

- (i) Find the eigenvalues of A. (ii) Find bases for the eigenspaces of A.
- (iii) Determine whether A is diagonizable. If so, find a matrix P that diagonalizes A, and determine $P^{-1}AP$.
- (iv) Compute A^{10} .

(b) Let
$$A = \begin{bmatrix} a+b & a \\ -b & a-b \end{bmatrix}$$
. Find the values of a and b so that $v = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

is an eigenvector of A corresponding to the eigenvalue -1.