IE-352
Section 2, CRN: 48706/7/8
Second Semester 1435-36 H (Spring-2015) - 4(4,1,2)
"MANUFACTURING PROCESSES - 2"
Wednesday, April 06, 2016 (28/06/1437H) Machining Economics Exercises ANSWERS

Name:	Student Number:
AHMED M. EL-SHERBEENY, PHD	4

Answer the following questions.

1. For a given metal cutting operation, it has been found that the economical durability is 64 min .
a. Determine the cutting speed if $V T^{1 / 3}=100$.
b. Calculate then $T_{o p t}$ and $V_{o p t}$ if tool exchange time $T_{C}=13.5 \mathrm{~min}$

Given:

- In Taylor Tool-Life equation, $V T^{n}=C$,
- $n=\frac{1}{3}, C=100$

Solution:

a)

$$
V=\frac{100}{T^{1 / 3}}=\frac{100}{64^{1 / 3}}=\frac{100}{\sqrt[3]{64}}=\frac{100}{4}=25 \mathrm{~m} / \mathrm{min}
$$

b)

$$
\begin{gathered}
\boldsymbol{T}_{\text {opt }}=\left(\frac{1}{n}-1\right)\left(T_{c}\right)=\left(\frac{1}{1 / 3}-1\right)(13.5 \mathrm{~min})=27 \mathrm{~min} \\
\boldsymbol{V}_{o p t}=\frac{C}{\left[\left(\frac{1}{n}-1\right)\left(T_{c}\right)\right]^{n}}=\frac{100}{\left[\left(\frac{1}{1 / 3}-1\right)(13.5)\right]^{1 / 3}}=\frac{100}{27^{1 / 3}}=\frac{100}{3} \\
\quad=33.3 \mathrm{~m} / \mathrm{min}
\end{gathered}
$$

2. A tool used for a metal cutting operation shows a tool life-speed relationship of $V T^{0.125}=44.5$. Originally, 15 minutes were required to replace a dull tool, but a new tool holder has made it possible to reduce the time to 5 minutes. What is the resulting increase in cutting speed with regards to the maximum rate of production in this operation?

Given:

- $T_{c_{1}}=15 \mathrm{~min}, T_{c_{2}}=5 \mathrm{~min}$
- $V T^{0.125}=44.5$

Required:

$$
\frac{V_{o_{2}}-V_{o_{1}}}{V_{o_{1}}}=\text { ? (based on max. production, i.e. based on } T_{p, \min } \text { equations) }
$$

Solution:

$$
\begin{gathered}
V_{o_{1}}=\frac{C}{\left[\left(\frac{1}{n}-1\right)\left(T_{c_{1}}\right)\right]^{n}}=\frac{44.5}{\left[\left(\frac{1}{0.125}-1\right)(15)\right]^{0.125}}=\frac{44.5}{[(8-1)(15)]^{0.125}} \\
=\frac{44.5}{1.789}=24.9 \mathrm{~m} / \mathrm{min} \\
V_{o_{2}}=\frac{C}{\left[\left(\frac{1}{n}-1\right)\left(T_{c_{2}}\right)\right]^{n}}=\frac{44.5}{\left[\left(\frac{1}{0.125}-1\right)(5)\right]^{0.125}}=\frac{44.5}{[(8-1)(5)]^{0.125}} \\
=\frac{44.5}{1.560}=28.5 \mathrm{~m} / \mathrm{min} \\
\frac{V_{o_{2}}-V_{o_{1}}}{V_{o_{1}}}=\frac{V_{o_{2}}}{V_{o_{1}}}-1=\frac{28.5}{24.9}-1=0.1472=\mathbf{1 4 . 7} \% \text { increase }
\end{gathered}
$$

