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Normed Spaces, Banach Spaces

1.1 Normed and Banach Space

Definition (1.1.1)

A normed space X is a vector space with a norm defined on it A norm

on a vector X is a real valued function HH : X = R valueatanxe X is
denoted by HX H and which has the properties:

1- HxH > O,Hx” =0 x=0.

2- [lex]| = Jer[ x|

3+ < e+
where X, y are arbitrary vector in X and o is any scalar. A normed space
is a pair (X, |}{) simply by X.
Remark (1.1.2)

Let HH : X = R be a norm on X , then the norm is continuous on X .

Proof:

Let x, be an arbitrary point of X , and lete > 0 be given
Take 0 = ¢

x € X such that HX—X(,H <o0=¢

Il = e+, = x| < ke =+ e | = el = e [ < = | )
x| = ke, + 2= e < ey =+l = o [ = ] < e =,
= o=l )z =] @

from (1) and (2) we have:
= [ = x| < ol = oo [ <l =

= =l < fx = x| < 6 = ¢

then HH X — R is continuous at x,, since x, is arbitrary point of

X ,then ‘H 1s continuous on X .
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Remark (Minkowski inequality) (1.1.3)

Given two sequences (&), (7)1, st. 26 <o X ] <o p>1
i=1 i=1

Then(z ‘é:l +ni‘p)%, < (z ‘é:l‘p)/p + (z ‘ﬂi‘p)% .
i=1 i=1 i=1

Examples of normed spaces:

Example (1):
Define [||: ®" > K by[x]= X &% x= (6. &hnn £
i=1
Clearly || is well defined.
Now, Let x,y € R" and o is any scalar:
L= e o,
i=1
and|x|=0 & (Zn: EN'i=0e E=0Vie £ =0Vie x=0.
i=0
2 o = (X (@) = (L ater) = @y &)
i=1 i=1 i=1
= @) (D" =l
i=1
3-fx+ )= O &+
i=1

< (; é:iz)% + (; 771-2)% = HXH + HyH (by Minkowski inequality)

Hence, from 1, 2, and 3 (R",|]) is norm space.
Example (2):
LetR’ = {x =(61,6,):6,,6, € 9{}, Let x=(§.6,),y=(1,.7,) are

any elements inR”, a is any scalar, then the following equations are
norms on R > :

@) [+, =16+ .|
1-|lxl, =l + ez = 0.
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and x| =0 & [§|+]&]=0e & =04, =05 x=0.
2- o], =[(ag . ag)] = |agi |+ e | = ler (6] + 62D = [er] 1]
-+ [, =&+ 7.8 +m)||, = |6+ |+ (6, + 7,
<[G[+im [+ I+ ma] = Al + 162D+ [+ o = e, + ]
Hence, from 1, 2, and 3 (9{2,“-”1) 1S norm space.
®) [, = (&7 +&5*
1- [, = (€2 + &5 =0,
and[x], = (&7 +&) =0 & +& =0 & =0, =0
©£=0<5=0x=0.
2-Jlerx, = (@) +(@&,)) " = (@ (&7.6)))"
=lal(¢ + &) =],
3-lle+ v, = 1&+ &+, = (G +m)7 + (6 + )7
SEHED @ 40"
=[xl +[1¥1
Hence, from 1, 2, and 3 (R°, HHQ) 1S norm space.
(©) [[x].. = max &[]}
1- [l = max 4.} |6 F> o,
and [¥|. =0 & max {& | |&,[}=0 & & =0,£, =0 x=0.
2 o] = max s |z} = el ma (&} 2, = ..
3-[x + v, = max ﬂ§1 +1 )5, + 772‘}5 max ﬂ§1‘+ 7,1+ "72‘}
= max (&, b |& [1+ max | = o] + [y
Hence, from 1, 2, and 3 (R7.|||) is norm space.
Example (3):

There are several norms of practical importance on the vector space of
ordered n-tuples of numbers, notably those defined by

(a)HxH1 = ‘51‘"" ‘52"" e gn
(b)Hpr =& +|&] +. + \fn\”)/” 1< p <+
(c)Hme = max ﬂfl‘,‘fz‘ ...... g }

(by Minkowski inequality)
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Now, X = (&,&,5e, €,), Y = (17,,75,...., 1],.) and o is any scalar:
@) [, =&+ IE] + - +[E,

1-|x]|, = [&]+ ||+ - +[E0] 2 0,

and x| =0 & |§|+...+|f,|=0e & =0VIi<i<ne x=0.
2-|lox|, = ||+ ... +]a& | = |||+ ... + |£.) = |e||[x]) -
3-|x+y||, =& +m |+ +|E, +7,
<&+ |+ + [+ ] = (& ]+ +|ED + ]+ o + 1D
=[xl + 1}

(b) Hpr =(|&|" +.... +|¢, Y 1< p <+
1- |x], = & ]+ + 2, "y >0,

and

|| =0 (& +..+|E )" =0 & =0Vi<isne x=0.

S

z_Hapr =(|d,|" +.... + |, Py = (le|” (&]" + ..o + ¢, Y
=le|&|" +.... +|&, Y= ‘aH‘xHP.
e+ ] = Qg +m]H
i=1
<Q kK )+ Q. ‘771-‘[))%’ (by Minkowski inequality)
i=1 i=1
= e[, + {1+,
(©) || = max ‘ﬂfl‘ ...... ‘fn‘}
1- H)CHoo = max {‘51‘ ..... ‘fn‘}z 0, since ‘é:l‘ >0 V1<i<n,
lx[. =0 & max {& .. |E,[}=0 e & =0vi<i<neo x=0.
2-|lex| . = max ﬂafl‘ ..... g, }= |or| max ﬂfl‘ ..... &)= x| x|
3|+ y|. = max{& + 7|, |E, +m, [} < max{& |+ ). |E |+ ]}
= max ﬂcfl‘ ..... & [}+ max {]7]1‘,... 7 |}= I+ |-
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Example (4):

(Unit sphere), the sphere S 0:1) = {xre X 3HXH=1} in a normed
space X is called the unit sphere; we want to show that for the

following norms:

@) [x], =[&]+ S|

SO;1) = fre R*: x| =1}

[, =lé[+1 =1 = |5[=1-]|
In 1% quarter &, 2 0,&, 20,

hence we get L, : &, =1-¢,,

L,

»

which is straight line of slope -1, (-1.0)

and cutting the y-axis at (0,1),
and the x-axis at (1,0),

In 2% quarter &, < 0,&, > 0,
hence we get L, : &, =1+ ¢,
which is straight line of slope 1,
and cutting the y-axis at (0,1),
and the x-axis at (-1,0),

0.-1)

(1,0)

Figure (1)

In 3" quarter &, < 0,&, <0, hence we getL, : &, =—1-&,
which is straight line of slope -1, and cutting the y-axis at (0,-1),

and the x-axis at (-1,0),

In 4" quarter &, > 0,£, < 0,hence we get L, : &, = —1+¢,,
which is straight line of slope 1, and cutting the y-axis at (0,-1),

and the x-axis at (1,0),
Then we have figure (1)

(b) [, = &7+ )"
SO;1) = fre R*: x|, =1}

|x[, = (&2 +&H% =1 =& +E =1,

S

©.1)

S

which is equation of circle
with center (0,0) and radiusl,
then we have figure (2)

(-1,0)

N

0,-1)

/(1,0)

Figure (2)

(5
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o) x| = max {& L&} SO ={re R x|, =1}
o, = max {&LE=1 = =1 o =1,
if |&|=1=¢&=1 or &=-1 and §&,=0,
hence we get L, : &, =1 and L,:& =-1,
if §Z‘=1:>§2:1 or &, =-1 and & =0,
hence we getL, : &, =1  and L,:¢, =-1,

then we have figure (3) R
hence the sphere 0,1 L.
SO = {re R || =1}
is the square as given in figure(3) L, L,
(1.0) P
Ly 0,-1)
Figure (3)
d) 1, = (&*+&)"
( ) 4 1 2 k§2

SO;1) = fre R : 4|, =1}
.1

[, = & +EH =1 = Eag=1
Then we have the figure (4) / \
(1,0)\/0,0) ¢

Figure (4)

0.-1)
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Definition (1.1.4)

A norm on a vector space X a metric d on X X X which is given by
dx,y)=|x-y| xyeX

d is well defined, since the norm is a well defined function
1-d(x,y) = Hx— yH > 0.

2-d(x,y)=0& x =y,
d(x,y)=0<:)Hx—yH=0(:)x—y=0<:)x:y.

3-d(x,y)=4d(y,x),
d(x,y) =|px—y|=]y-x]=d(y.x.

4-d(x,y)<d(x,z)+d(z,y),
d(x,y)=|x=y|=|x-y+z-z|<|x-z]+|z-y|
= d(x,2)+d(z,y).

Thus true, every normed space is a metric space.
The converse is not true,

Counterexample:

Let d:SxS — R* ,where S is set of all sequences, d defined by

_ ML ‘fi—ﬂi‘
d(x’y)_;f—l"“fi—ﬂi‘
Letx=(§i), _(ﬂ)Z_(a) x,y,zeS
o1 -l o
1-d(x,y) = ;2’1+\§ 77‘
=
zdu)o—0¢¢§:215§”4‘ 0 |&—n,|=0

s & =nVis x=y.

= 1 ‘é«' 77‘ 1 ‘ g‘
3_6[()@)’)—22 1+‘§ 77‘ le 1+‘ _g‘

=1 ei-m 1 Gi-mta e
. Il
O L ] TR Y T nva o)

=d(y,x).




Li-a] gt eom]
_;2i1+‘§i—ai‘+;2 1+‘a,_ ‘ d(x,z)+d(z,y).
then (S, d) is metric space.
On the other hand,

Let x = (1,1,0,0,.....), y =(1,0,0,0,.....), &« = 3
— ax = (3,3,0,0,.....), &y = (3,0,0,0,.....)
=1 g-n &1 |§-n]
ald(x,y) = _—
NOW,‘ ‘ X,y 22 1+‘§ 77‘ ;211+‘§l_nl‘

:{Lj;ﬁ+ijzﬂﬁﬂﬁizslzz

2 1+ [i-1] 2% 1+[1-0| 42 8
S L ‘agi—mﬂ
and d(ax,ay) = Z2 1+|ag, —an,|

(L B3l B0 133
2" 1+3-3) 27 1+[3-0 Tl 44 16

that means |@|d (x,y) # d (ax, @),

hence d is not obtained from a norm, this may immediately be seen
from the following lemma which states two basic properties of a metric
d obtained from a norm.

Lemma (1.1.5)

A metric d induced by a norm on a norm space X satisfies:
(a) d(x+a,y+a)=d(x,y).
(b) d(ax,ay) = |a|d(x, y).

for all x, y,a € X and every scalar a.

Proof:

d(x+a,y+a)=Hx+a—(y+a)”=Hx—y”=d(x,y),
and d (@ ay) = o - ] =l — 3] = frld Cx. ).



Chapter 1 9.

Definition (1.1.6)

Let (x,),_;be a sequence in a normed vector space(X,|), we say

(x,) converges to x,, and denoted by x, — x,if for any

>0 3k, e N suchthat Vn >k, = <E.

x}’l_x()

Definition (1.1.7)

Let (x,),_be a sequence in a normed vector space(X,|), we say
(x,) is a Cauchy sequence if V€ >0  Jk,e N

<& Vn,m>k,.

such that

xn B xm

Definition (1.1.8)

Let (X,

if every Cauchy sequence in (X,

) be a normed vector space, we say X is complete or Banach

) is convergent.

Examples of complete normed spaces:

Example (1):
Let C[a,b]={x:x:[a,b]% R is continuous } we define a norm
l: la.b] > Ryl = max o]

The norm i1s well defined, since x i1s continuous on a closed and
bounded interval, that means x attains the maximum value on the

interval, then gl[%]‘x (1 )‘ exists and unique.

Now, we want to show that (C [a,5]||{)) is norm space

Let x, y are any elements in C [a,b] , 0L 1s any scalar:

1- ] = max

tela.,b

x()[20 since [x(1)|20  Vie [a,b]
x)|=0e x(t)=0 Vte[a,b]e x=0.

and ||| = max

max

2l = mpgfes (0] = max e = o ma

tela,b

x(0)|= e x|
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3 [+ v = max j(r + y)(0)] = max |x(0) + (1)

S gl[%](‘x(f)“" NOE gl[%]‘x(l‘)H gl[%]‘y(t)‘ = [|x[|+ [[»]

Hence, from 1, 2, and 3 (Cla,b]

Now, we want to show that C [a,b] 1s complete,

) is norm space.

Let (x,)5., is any Cauchy sequence inCla.b], x,:la,b]— FRis
continuous = V& >0  dk, € N such that

|, = .
from (1)
= {n[a)li]‘xm (1) —x, (t)‘ <&

<& Vn,m >k,

= Vte [a,b] n,m 2k,
= |x,, (1) — x, (1) < m[a)li]‘xm(t) - x, (1)< € (2)
= Vte [a,b] (x,(t)_is a Cauchy sequence of numbers, since
R is complete,
= (x,,(1)),._ is convergent, i.e. ng}o x,, (1) exists Vi€ [a,b]
So, we can define a function x: [a,b] — R by
x(t) = lim x, (1) (3),

clearly x is well defined, since the limit exists

Now, we using (2), for ¢ € la,b] n>k,

|x, (1) = x(1)| = |x, () = lim x,, (1) from (3)

m—»o0
= l}f{o‘xn (1) = x,,(1)| (since the limit is a continuous function).
<&

Since the limit depends ¢

= (x,) Converges uniformly to x
=> X 1s continuous

that means x € Cla,b] and x, — x

= Cla,b] is complete.
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Example (2):

Let lp:{x:(fi)35i€C’Z‘éi‘p<°°}, we define a norm
i=1

o1 > by b= SN,

The norm is well defined by definition.
Now, we want to show that (!”,|[[) is norm space,

Let x = (&), y = (77,) are any elements in [” , a is any scalar:

-l = e =0

and [|¥|=0 & (g\é\p)%’ =0 f{=0Wie (£{)=0e x=0.

2- le = Jee)n | = T leg ) = T lal 161 = el T e
= (el Tl = lal X[l = el

s b sl= o+ ol = S g 'y

<CLE + Sl

=[x+ Il

Hence, from 1,2 and 3 (I”.|||] is norm space.

(from Minkowski inequality)

Now, we want to show that /” is complete,

Let (x,,)be a Cauchy sequence in [” , where x,, = (£{"))7,,
and let £>0 be given, then 3k, € N such that

<& Vm,n2=2k,

xm - xn

from(1)
= (i‘ﬁ;’")—ﬁj")‘p)%’ <€ Vm,n 2k,
j=1

= 2\5;"”—5;")\” <e’ Vm,n 2k, (2)
J=

= Vje N,Vm,n 2k, ‘gfj(’”) _§J<_">‘S Z ‘g}(_»w _§;n>‘< e
j=1
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so, Vm,n2k, je N:>\§;'">—§;") <&
= Vje N, (&™) is a Cauchy sequence of numbers, since C is
complete,= (£"),_ is convergent for each je N say, (")

converges to$;, put X = (&,,4,,85,.) = (§,)7

Claim:

- xe 17 ie. D IE| <o
j=1

2- (x,) = x.

Now, from (2) Vke N, m 2k,

Z‘f(m) ¢, ‘— Cf(m) hm cf(") — hmz‘é:(m) Cf(n)
< hmZ‘g("” gl < g
= ||x,, = x|’ ZZ‘f;m)—ij‘<g” (3)

j=1

= x,, — Xbelong to [”
since x,, € [” .and [” is a vector space
= x=x,—(x,—x)el”, (4)
and from (3) it clear that Vm = k,,

|x,, — x| < €
= (x,) > X (5)
from (4)and(5)=> [” is complete.

Example (3):
We proved that (R",

[x|= Q& xe .
j=1

Now, we want to show that R" is complete

Let (x,,) be a Cauchy sequence inR", x,, = (£, &",..., &)
= Ve >0  dk, € Nsuch that

‘ Vm,r >k,

xm -
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= O (EM-EMNY i <e  Vmr>k,
j=1

= Vje N, Vmr>k, [E"-&m

<¢
since R is complete = Vje N, (") is convergentVje N say
(&")m_ converges to &, put x = (£,&,,...6)=(5)", xe R" we
want to prove that x,, — x since (£;")) = &, lim &M =g,
m 8 .

= 3k, e N such that m 2 k; = [£" - & )| < 7 Vji=12,...n
Take k = max {k,,k,,..., k, }
£
Jn
n n 82 82
=2 M-y <y —=n—=¢

j=1 j=1 N

n

= Vm2k= ‘f;’")—éj‘<

= (Zn: (EMW &) <e

= ||, —x|< e
=X, = X

= R"is complete.

Example (4):
Let!” ={x= (& ). (&) is bounded sequence f, we define
i o Soyld=sls| o

Jje
The norm is well defined, since x =(&;)€ [”is bounded sequence
= ‘Cf,-‘ <c,Vje N for some ¢, > 0= ﬂf,-‘i J€ N}is bounded subset

of R , = sup ‘f j‘ exists and unique.
Jje

Now, we want to show that ({7, ‘) is norm space,

Let x =(£;), y = (7,) are any elements in [~ , a is any scalar:
1= sup | 0,
je

andHXH=0<:>S}lg‘fj‘=0<:>§j=0 Vie N & x=0.
Jje
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2- x| = sup iz |y = sup i = efsup | = e
jeN jeN jeN

s-ls sl =suple, | sup (o, = sl | - supl | = o]+ o]
jeN jeN jeN jeN

Hence, from 1,2 and 3 (I, ‘) is norm space.

Now, we want to show that /™ is complete.

Let (x,) be a Cauchy sequence in [~ x,, = (£")7,
= Ve>0 dk, € N such that

‘xm—xn <& Vm,n>k,
from (1)
= sup ‘cfj(.’") -&Ml<e  Vm,n>k,
Jje

= Vje N, mn>k,, \5;"“—5;") <e (2)

< sup ‘fj("” - fj(.")
jeN

= Vje N, (&")_ is Cauchy sequence of numbers, since C is
complete, = (£{")_ is convergent for each je N, say (£{"),
converges to$ ;, put X = (§,6,,....) =(&;)7,

Claim:

1- xe ["ie. x = (&™), is bounded sequence.

2- (x,) = x.

Now, Vje N, m>k,

- -5 -fer -

= }gr}o‘f;m) - 5,@‘ from(2)
<& (3)

= x,, — X 1is bounded sequence = X, — X belong to [~
since x,, € [” ,and [” is vector space
> x=x,6—(x,—x)el” (4)
and from (3) it clear that Vm 2 k,,
lx,, — x| < e

= (x,) > x (5)

from (4)and(5)= [~ is complete.
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Example of non-complete norm space:

Define |13t — 3" by x| = |

Clearly, the norm is well defined

Now, let x,y € R and o is any scalar:

1- HxH= ‘x‘ZOand HxH=O =S ‘x‘=0 < x=0.
2-[lox] = o] = |er|e| = e[}

3+ ] = e vl < [+ [y] = [l + 1)

Hence, from 1, 2, and 3 (R",||) is norm space
1.
Now, let x,be a sequence inR*, X, = (;)nzl ne N

2
ve>0 dk, € N such that k. > =

1

n

1

m

m,n >k,

n

'xn - xl’l’l = 'xn - xl’l’l = S

1 1‘_

l_}_(_L)
n m

1

1 1 1 2
—< —4—="<E€
n m k., k, &k

= x,1s Cauchy sequence

£

1
but x, =(—) —> 0 0g R
n

= (R, | is not complete.



Chapter 1 -16-

1.2 Linear operators

Definition (1.2.1)

A linear operator T is an operator such that:
(a) The domain D (T) of T is a vector space and the range R(T') lies in

a vector space over the same field.
(b) for all x,y e D(T)and scalars o,

T(x+y)=T(x)+T(y).
T (ax) = oaT (x).

Definition (1.2.2)

The Null space of T is the set of allx € D(T) such that7 (x) = 0.

Examples of linear operators:

Example (1)
The Identity operator I, : X — X 1is defined by

I,(x)=x Vxe X
this operator is linear, since

I(x+y)=x+y=1(x)+1(y) Vx,ye X.
I(ax) = ax = al (x) , where a any scalar, x € X

Example (2)
Let be X a vector space of all polynomials on the closed bounded

interval [a,b], we define the operator?” : X — Y by:
T(x(t)=x(t) Vxe X

this operator is linear, since Vx,y € X tela,b]

(T(x+y))(@) =T (x+y)1) = (x+y) ()= x"(t)+ y' (1)

=T (x()+T(y(@) =T (x)+T(y)(1)
there for T (x+ y) =T (x)+T(y).
and
(T (ax))(1) =T ((ax)(1)) = (ax) (1) = ax'(t) = aT (x(1)) = (aT (x))(1).

there forT (ax) = aT (x). Hence T : X — Y is linear operator.
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Example (3)

The operator T from C [a,b] into itself T : C [a,b] — C [a,b] can be
defined by

T(x(n) = [ x()dr 1€ [a.b]
this operator is linear, since Vx,ye X  t€ la,b]

(T (x+y)(0) = [ e+ y)(D)d7 = [ (x(0)+ y()d7

= [(x(@ydr+[ y(@)dz = (Tx@) + (Ty (1))
then T(x+ y) =T (x)+T(y).

and (T (@x)(1)) = [ (ax)(0)dT = a[ x(v)dT = (aT (x))(1)
then T (ax) = aT (x). Hence T : C[a,b] — C[a,b]is linear operator.

Example (4)

The cross product with one factor kept fixed defines a linear operator
T:R° > Rby Tx = xXa = (X, — X;Q,, X,0, — X,05, X, &, — X,Q,)

wherea = (¢;) € R s fixed, a # Osay @, # 0

this operator is linear, since Vx, y € R° o is any scalar:

I-T(x+y)=(x+y)Xa=(xxa)+(yxa)=Tx+Ty.

2- T(ax) = (ax)xa = a(xxa) = aTx. Hence, T is linear.

The null space of this operator is N (T') = {x e R’ :Tx = (0,0,0)},

Ix = (0,0,0) & (x,0, — x;,, x,0, — x,&5, x,&, — x,&,) = (0,0,0)

s Dx,o,—-x00,=0  Q2)xyo,—x00,=0  B)xa,—x,a, =0
o

since @, #0 then from(2) we get *; ijl ,and from (3)we
1

aZ
etts = — X
g a,
a, a, a, o,
= xz(xl’xz’x3)=(x1’ x19_x1)=x1(19_’_)
a  a, a, «a,
Now, multiplying both said by &, we get a,x = x,(@,,@,,a;)
X

Xl
= x=—ta=>x=pf"a g =L
1 , Where 1

Hence the Null space is N (T) = span {a}.
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Theorem (Range and null space) (1.2.3)

LetT be a linear operator, then:

(a) The range R(T) is a vector space.

(b) Ifdim D(T) = n < oo ,thendim R(T) < n.
(c) The null space N (T') is a vector space.

Proof:

(a) Lety,,y, € R(T) we want to show that ay, + By, € R(T) for any
scalars @, 3

Now, we have y, = T (x,), y, = T (x,) for some x,,x, € D(T)

and ax, + Px, € D(T) because D (T)is a vector space

and since T is linear, we have

T (ax, + px,) = aT (x) + BT (x,) = ay, + By,

hence @y, + By, € R(T') ,since y,,y, € R(T) were arbitrary and so were
the scalars this prove that R(T) is a vector space.

(b) We choosn +1element y,, y,.--» ¥,,; of R(T') in an arbitrary fashion.
Then we have y, =T (x)),..., ¥,,, = T'(x,,,) for some Xx,X,,..., X, in
D(T)

Since dim D(T)=n , this set {xl,xz,..., xn+1} must be linearly
dependent. Hence @, x, +...+ &, x,,, =0

for some scalars @, ..., &,,, not all zero. SinceT is linear and70, =0, ,

application of T on both sides gives
rox+.+a, x )=y +.+a, . y,., =0,

This shows that {yl,--., Vst }is linearly dependent set because the & ;'s

are not all zero. Remembering that this subset of R(T) was chosen in
an arbitrary fashion, we conclude that R(T") has no linearly independent

subsets of n+1 or more element. By definition this means
thatdim R(T) < n.

(c) Letx,,x, € N(T),then T(x,) =T (x,) =0, & any scalar,

Since T is linear

T(x,+x,)=T(x,)+T(x,)=0+0=0,hence x, +x,€ N(T) (1)
T(ox,))=aT(x;)=a0=0,hence ax, € N(T) (2)

Then, from (1), (2) N(T) is a vector space.
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Definition (1.2.4)

Let X,Y be a vector spaces, T : D(T') — Y is said to be injective or one
to one, if for any x,, x, € D(T)
X, #x, = T(x)#T(x,)

equivalently,
T(x)=T(x,) = x;, = x,.
Definition (1.2.5)

LetT : D(T) — R(T) is one to one,
The mapping 7' : R(T) = D(T) defined by
T (y)=x
which maps every y € R(T') onto that x€ D(T) for which T(x) =y,
the mapping 7 ' is called the inverse of T.we clearly have
T'T(x)=x Vxe D(T)
T '(y)=y Vye R(T).

Theorem (Inverse theorem) (1.2.6)

Let X .Y be a vector spaces, let7T : D(T) — Y be a linear operator with
domain D(T) € X and range R(T') C Y , then:
(a) The inverse7 ~' : R(T) — D(T) exist if and only if
T(x)=0= x=0.
(b) If 7" exists, it is a linear operator.
(c) If dim D(T) = n < o and T ' exists, thendim R(T) = dim D(T).

Proof:

(a) Suppose thatT ' : R(T) — D(T) exists, thenT : D(T) — R(T) is
one to one, suppose 7 (x) = 0, then

T(x)=T(0)=0=> x=0
Conversely
Suppose that7 (x) = 0= x =0, letT (x,) = T(x,), since T is linear,
T(x,—x,)=T(x)-T(x,)=0
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so that x, —x, =0
Hence x, = x,
Hence T is one to one and so7 ~' exists.

(b) If T~ : R(T) — D(T) exists, it is a linear operator. Indeed,
Lety,,y,€ D(T™")=R(T),then 3x,,x, € X such that
yi=T(x),y,=T(x,),then x, =T ' (y),x, =T "' (y,)
Now,

T_l(ay1 + By,) = T_I(Q'T(xl) + BT (x,))

=T (T (ax, + Bx,))

= ax, + fBx,

=al ' (y)+ BT ' (y,).
Hence, T ' is a linear operator.

(c) Supposedim D(T)=n <o and T~ : R(T) — X exists,

By theorem (1.2.3(b)) we have dim R(T') < dim D(T) =n

Now, n = dim D(T) = dim R(T ") < dim D(T"") =dim R(T) < n
Hence,dim D(T) = dim R(T).

Applications:

A- LetT, : R — R’ be defined by
Tl(é:l’gz) = (51’0)

Then 7, is linear operator.
Proof:

Letx = (£,&)e R,y = (77,,1,) € R*, and a is any scalar
T, (x+y)=T,5,.6,)+ (1,,1,)) =T, (5, +7,,6, +77,)
= (&, +7,,0) = (£,,0) + (7,,0) = T,(x) + T, (y).
T,(ax) =T, (&, 0 ,) = (a,,0) = a(&,,0) = aT,(x).
and R(T,) ={(£,,0): & € R}=Rx{o}
N(T)) = {(51’52)6 R’ :T1(§1a§2) = (O,O)}
={&.e)e R0 = 0,0}
={&.éne R =0}
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B-Let T, : R? — R’ defined by
Tz(gl’fz)z (0’52)

Then T, is linear operator.

Proof:
Letx =(&.6,)e R,y =(1,.n7,) € R*, and o is any scalar
T,(x+y)= Tz((fl’fz)‘l'(nl’nz)) = Tz(é +771’é:2 +17,)
= (O’fz +17,) = (0’52)4‘(0’772) =T,(x)+T,(y).

T,(ax)=T,(&,,as,) = (0,08 ,) = 2(0,&,) = aT,(x).
and R(T,) =1(0,&,): &, € R}={0}xR.

N(T,) = {(épéz)e R* :Tz(épéz) - (0’0)}
= {(épéz)e R? 3(0’52) = (an)}
= {(51’52)6 R 18, = 0}°

C- LetT, : R* > R° defined by
T3(§1’é:2) = (52’51)

ThenT5; is linear operator.

Proof:
Letx = (£,&)e R,y =(7,,1m,) € R*, and a is any scalar
T,(x+y) =T,((6,,6,) + (1.11,)) = Ty (6, +11,.6, +17,)
= (5, +1,.6, 1) = (5,,6) + (17,,1,) = T, (x) + Ty (y).
T, (ax) =T,(05,,05,) = (& ,,05,) = a(5,,5,) = aT;(x).
and R(Tz) = {(52’51) : 51’52 € SK}Z R

D-LetT, : R* - R’ defined by
T4(§1’§2) = (751’ 752)
ThenT, is linear operator.

Proof:
Letx = (&.6,)e R,y =(1,.n7,) € R*, and o is any scalar
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T,(x+y)=T,((&,5)+(m,.1n,) =T, (& +n,,8, +1,)
= (K, + 1., + 7)) = (KL %)+ (m . 7,)
= T4(X)+T4()’)-
T,(ax) =T, (& ,,05,) = (Y&, & ,) = a(¥%,,7%,) = aT,(x).
and R(T4) = {(751’752) . 51’52 € 9{}: R
N(T) ={&.8)e R T,(6.6,) = (0.0)}
={e.ene w2022, = 0.0)}
={e.enenr g =0¢ =0}

E- Let T:D(T) — Y be a linear operator whose inverse exists. If
{xl,..., xn} is a linearly independent set inD(T), then the set
{Tx,...., Tx, }is linearly independent.

Proof:

We want to show {7x ..., Tx,, }is linearly independent.
So, let#,,..., &, be scalars such that
aTx +.+aTx, =0,

we want to prove; = 0,Vi=1,..,n
since T is linear, thenT (&, x, +...+ a,x,) =0,
and since 7 ' exists, then

T (T(a,x,+...+a,x,)) =T(0,)
=>ox+..+ta,x, =0,
since 1x,.., x, } linearly independent, thena, = 0,Vi=1,..., n

Hence {TX poeees TX }is linearly independent.

F- LetT : X — Y be a linear operator anddim X =dimY =n < oo,
then R(T) =Y if and only if 7' exists.

Proof:

Let T : X — Y be a linear operator anddim X =dim Y =n < o, and
R(T)=Y , we want to show thatT "' exists, i.e. T is one to one, i.e.
Ix=0=x=0,

let B ={e,,.... e, Jbe a basis for X ,and lety € Y = R(T) , then
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n
y = Tx for some X € X’xzzaiei
i=1

y = T(Z ae;) = Z aT(e;)  then {Te,...., Te, } generates Y = R(T)
i=1 i=1

sincedim Y = n < oo then {Tel,..., Te,,}is a basis forY
Now, let Tx =0

= T(Zn: oe)=0
i=1

= Zn: oT(e)=0
i=1

since {Tel s 1€, }is linearly independent (from E)
= a,=0,Vi
= x=0

That means 7 is one to one, so 7T~ exists.

Conversely
Let T:X — Y be a linear operator and dim X =dimY =n < oo |

and T ~' exists, we want to show that R(T) =Y ,
SinceT is linear operator, 7 : X — R(Y)

= dim R(T)<dm X =n (1)
since T 'exists, T ' :R(T) = X

= n=dim X <dim R(T) (2)
from (1)and (2) we get

dim R(T)=n

since R(T") subspace of Y , and dim ¥ = n
Hence R(T) =Y.
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1.3 Bounded and continuous linear operators

Definition (1.3.1)

Let X and Y be normed space and 7 : D(T) — Y a linear operator,
where D(T') € X .The operator T is said to be bounded if there is a real
number c¢ such that for all xe D(T)

7] < x| (M
the smallest possible ¢ in (1)
M <c x#0
HxH
AEETR O
wntry 4]

HTH is called the norm of the operator T, if D(T) ={0},we
define|T | = 0.

Lemma (1.3.2)

Let T be a bounded linear operator, then:

(a) An alternative formula for the norm of 7 is: I = sup 7|

(b) The norm defined by (2) satisfies the properties of norm.

Proof:

1
(a) we writeHxH =a>0,andset ¥ = ;X , where x # 0 ,then

L 2
H)’H_ ;x = p =;=1’and since T 1is linear (2) gives
T
HTH— sup L - L= sup HT( ol = sup ]
HXH xeD(r HyeHDm
y|=

writing x for y on right, we have HT H Sup [7x].
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T|= sup +—
(b) H H (1) HXH

B — =] 5
oo [H
x#0

and|[T|=0& Tx =0  Vxe D(T),sothatT =0.
2- @] = sup laTx| = sup|a|[Tx] = |a|sup [7x]| = |e T

[l=1 [=l=1 [l=t

3- HT1 + Tz” = sup H(T1 + Tz)xH = sup HTlx + szH < sup HTle + sup HszH

J<[=1 J<l=1 =t J<[=1

= |1+ | ,xe D(T).

Examples:
Example (1):
The identity operator / : X — X on a normed space X # {0} defined

bylx=x Vxe X ,isbounded and has norm||/| =1, since

< e»o0
IxH

= <c
|
x|

Example (2):
The zero operator 0:X — Yon a normed space X defined
byOx=0 Vxe X ,is bounded and has norm|0]| = 0, since

HOxH < cHxH c>0
N
]
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Example (3):

Let X be the normed space of all polynomials onJ = [0,1] with norm

given[+] = max

on X by

,t€ J A differentiation operator 7T is defined

Tx (1) = x'(t)

this operator is linear but not bounded, to proof this
let x,(t) =t", where ne N

X, || = max =max [t"|=1
ref0,1] tel0,1]

and

Tx, (t)=x =nt""

HTx ‘Tx (0] = max ‘ t" N =n
f0,1]
= ‘ =Z_y ne N
X, 1
HTxn
Now, =n<c ne N
| el

But no fixed number c¢ such that o nsc

= T 1s not bounded.

Example (4):
We defined an integral operator7 : C [0,1] = clo.1] by

1
y=Tx , where Y1) = [ k(1,0)x(2)d7
0

k is given function, which is called the kernel of T , and is continuous
on the closed square G = J X J ,J =[0.1], this operator is linear,

T(x+y)= jk(r,r)(x+ YT = jk(t,r)(x(r)+ y(2)dr
j (1, T)x(Z')dT+jk(t D) y(T)dr = Tx +Ty.
0

T (ax) = jk(t,r)ax(f)df = ajk(t,r)x(r)df = aTx.
0 0
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T is bounded , to proof this, we first note that since k is continuous on
the closed square = k is bounded

= IM > O such that [k(t,7)|<M  V(,7)€ G (D
and since ||x] = max (1))
ol mkol= @

Now,

[ ]/ = [[7x|| = max |7 ()] = max

teJ

jk(t,r)x(r)dr

1 1
< max ﬂk(t,f)ux(f)\m < max jMHxH from (1), (2)
0 0
< M|x]
= ||Tx|| < M||x| M =c

= [[7x]| < cll+]

= T 1s bounded.

Lemma (1.3.3)

Let{xl, ----- , X, }be a linearly independent set of vector in a normed
space X (of any dimension), then there is numberc > O such that for
every choice of scalars &,,......, &, we have

> c(lor|+ ... +

Theorem (Finite dimension) (1.3.4)

If a normed space X is finite dimensional, then every linear operator on
X 1s bounded.

Proof:
Letdim X =n and{el,...., en}a basis for X , we take any X = Z e
i=1

and consider any linear operator 7 on X .
Since T is linear
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= [[rx| =

<maxfreoflEl

T(i giei) = ‘ZH: giT(ei)

we apply lemma (1.3.4) with @, = &,,x; = e, \we get

n n
CZ ‘51‘ < Z g:e
i-1 i-1

n 1 n 1
=SelsfSael- W @
i=1 Clli=1 C
from (1) and(2)
= ||| < max [T (e[ 2161 < %HXngX |7 el
i=1

1
= HTxH < 7/HXH where y = ;mgx HT(ek )H

From this we see that is 7 bounded.

Definition (1.3.5)

Let T :D(T) — Y be a linear operator, where D(T) < X , and X ,Y
are normed spaces, we say T is continuous at x, if for any
£>0 36 >0 suchthatif [|x—x,|< &

= |[Tx - Tx || < € Vxe D(T).

Theorem (Continuity and boundedness) (1.3.6)

Let T :D(T) — Y be a linear operator, where D(T) < X | and X ,Y
are normed spaces, then:

(a) T 1s continuous if and only if 7 is bounded.
(b) If T is continuous at a single point, it is continuous.

Proof:
(a) Suppose that T 1s bounded,
= J¢ > Osuch that |[Ix|< c|x]|  vxeD@T) (D
We want to prove T is continuous, so let €0 be given and let
x, € D(T') be any point
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Letd = ﬁ,
c
= HTx - Ton = HT(x - x(,)H Since T is linear
< cHx - X, H Since T is bounded
<co
£
=c—=E¢
c

= T is continuous at X,, since X,is an arbitrary point in D(T) jhence

T is continuous on X .

Conversely, assume that T is continuous at an arbitrary x, € D(T),

then given € > 0

= |Tx -Tx, || < € Vxe D(T) (2)
o
take any y€ D(T),y # O and set * = H Hy:x Yo _my
Il
= |x—x,| = —y = y||=
S ML
= ||Tx - = | Since T is linear
= T(iy)
¥
o
= mHTy H Since T is linear
HTx HyH HTyH < & from (2)
T < —
= [ry] < S
= HTy H < cHyH where c= %

= T 1s bounded.

(b) Continuity of T at a point implies bounded of T by the second part
of the proof of (a), which in turn implies continuity of 7 by (a).
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Corollary (Continuity, null space) (1.3.7)

Let T be a bounded linear operator, then:

(a) x, & x(wherex,,x€ D(T))implies Tx, — Tx.
(b) The null space N (T') is closed.

Proof:
(a) |[Tx, = Tx|| = |T (x, — x)|| Since T is linear
<||x, — x| Since T is bounded
HTH xn—xH% 0 Since X, = x = xn—xH% 0
= ‘Txn —TxH -0

= Tx, — Tx.

(b) let x€ N(T), then there is a sequence (x,) in N (T') such that
X, > X = Tx, = Tx from (a)

Since (x,) in N(T)

= Tx,=0
= Tx =0
= xe N(T)

= N (T)is closed.

Applications:

A- Let X and Y be normed spaces, then a linear operator 7 : X — Y
1s bounded if and only if 7 maps bounded sets in X into bounded sets
inY .
Proof:
Let T : X — Y be a bounded linear operator i.e. 3¢ € R such that
ITx||< c||x|  vxe X 1)
andlet A ¢ X , A is bounded set= dM > 0 such that
x| < M Vxe A (2)
andT(A) ={Tx : xe A}
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Now, forall xe A
= HTxH < cHxH from (1)

<cM from (2)

= T (A)is bounded.

Conversely, suppose that 7T is a linear operator such that 7 maps
bounded sets in X into bounded sets inY , we want to show that T is

bounded i.e. 3¢ € R such that [Tx| < ||| Vxe X |

o xe Xose0= X g = e X0

then|y[|=1 Vye A, Aisbounded = T (A)is bounded
i.e. = IM > 0 such that HTy H <M Vye A

Then Vxe X
- T(i)‘s M
]
= ol < v
[+

= T 1is bounded.

B-Let T :I” — [” be an operator defined by

=) =1x.n, = %’x = (51)

Then T is linear and bounded, but the range R(T) of T need not be
closed.

Proof:

First we want to show that 7 is linear,
Letx,,x, € [7,x, = (&), x, = (&), and a is nay scalar:

M (2) (1) (2)
S+ G, : !
S, ifl )z(é:li )+(§’i ) =Tx,+Tx,.

1- T(x; +x,) =(
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éz(l) éz(l)
2- T(ax)) = (@¢=—) = a(=—) = aTx,. Hence T is linear.
Now, we want to show that T 1s bounded,
M
I, = sup || < sup|&" | =
ie N l ieN

Finally, we want to show that the range R(T") of T need not be closed,
R(T) = {(%) rx=(g) e lm}is not closed i.e. 3(y,) any sequence in

R(T) such that y, = ybut y& R(T),
Now, letx, = (1, V2. ,«/_0 0,...), x, € ["forallne N , then

—T(x)—(1\/— \/_ 0,0,...) = y, €l  forall ne N,

1
Clearly Y, = ¥ = (L, T T ) =($),
Now, suppose that y = Tx for some x e [~
(\[)_(‘f):\lﬁ 57 Vie N= & =4/i  Vie N
= x=()=0,V2,33,.)e!l"

Therefore y ¢ R(T), so R(T) not closed.

C- Let T be a bounded linear operator from a normed space X onto
normed spaceY . If there is a positive b such that

ITx || > bl|x]| Vxe X
Then 7' :Y — X exists and bounded.

Proof:
LetTx =0= 0= HTxH > beH = Hx” =0= x=0,then T ' exists.

Now, let ye ¥ = T '(y) = x for some x € X , then

ol =l < 4 el = b

= fr o< 51

= T 'is bounded.
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1.4 Linear functionals

Definition (1.4.1)

A linear functional f is a linear operator with domain in a vector
space X and range in the scalar field K of X ; thus:

f:D(T)—> K

where K =R if X isreal,and K = C if X is complex.

Definition (1.4.2)

A bounded linear functional f is a bounded linear operator with range
in the scalar field of the normed space X in which the domain D(f)
lies.

Thus there exist a real number c such that, for allxe D(f)

|f ()] < e«
Furthermore, the norm of f is
|f (%)
fl= sup |£]l= sup |f(x)|
H H wp() HXH or ﬂf\f:}f”
= £ Gl <[ |x]}
Examples:

Example (1):

The familiar dot product with one factor kept fixed defines a functional
f: R’ - R by means of:

f(x)=xa=¢a,+¢&,a,+&a,

wherea = (@, a,, ;) € R’is a fixed, x = (£,,£,,&;)

f is linear and bounded,

first we want to prove f is linear,

1-f(x+y)=(x+y)a= (S +1,,5, +1,.6;+73).a

= (51 +771)a1 + (52 +772)052 + (53 +773)053

= (é:lal + fzaz + §3a3) + (e, + 1,0, +150;)

= +E+E).a+(m,+n,+ny).a=xa+ya=f(x)+ f(y).
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2- f(ax) =(ax).a = a, +d,a, +dé,a,

=a(a +&a,+8a,) =a(xa)=af (x).
Now, we want to prove f is bounded

reol= {2 baf< Dl RN Sl = lellel

By holder inequality,
There for f is bounded

So,Vxe R, x#0
|/ ()
I#I

|£]/= sup

| ()]

<fall = sup Zp= < lell = 7] < Jal M

@] @] _ e +aya, + asa|
Il el @+ s+ ey

= (@} +a; +a3)" =|a| = |f]= | (2)

from (1) and (2)we get | /] = |||

Example (2):

We can obtain a linear functional f on the Hilbert space!” by choosing

a fixeda=(a,)el*, and definef,:1>* = Cbyf.(0) =2 éa,,
i=1

where x = (&) e I?

Now, by holder inequality
Ylagls ClaH Q6" <o
i=1 i=1

i=1

= Z S, is absolutely convergent, then is convergent
i=1

= for each x € [” there corresponds number Z as,
i=1

= f, is well defined.

Fol=E s Eledl< ElaY D™ = el

oo

Z aié:i

i=1
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Theorem (1.4.3)

If f # Obe any linear functional on vector space X and x, any fixed
element of X —N(f), where N(f)is the null space of f, then
any x € X has a unique representation x = ax, + y , where y € N (f).

Proof:
: _ S
Letxe X , x,any fixed element of X — N(f),let & T )
S _ S _
fx Fo) x,) = f(x) ) f(x,)=0
Hence’c_&'3C belong to N(f)
f(x,) "0PeOns
x_j{((—;i))'x” = Yforsomeye N(f)
X = S (x) X,y
f(x,)

Hence, every x € X can be written of the formx =ax, +y ye N(f).
To prove this form is unique
letx=ax,+y=ax,+y y,ye N(f)a,a' e K;a+a’
= ax,—ax,=y —y
> x(a-a)=y -y
= (@d—-a)x,e N(f)
= x,€ N(f),
a contradiction, hence the representation is unique.

Application:

A- Let f:X — Kbe a linear functional, then two elements
x;, %, € X belong to the same element of the quotient space X /N ( f) if
and only if f (x,) = f(x,).
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Proof:

Suppose that x;,x, € x,+ N(f)for somex, € X , we want to prove
that f (x,) = f(x,),

Since x;,x, € x, + N(f)

= X =X, y,X, =X, +y, Y,y € N(f)

Now, f(x) = f(x,+y)=f(x,)+ f(y)=f(x,)

and f(x,) = f(x,+y,)=f(x,)+ f(y,)=f(x,)

Therefore f(x,) = f(x,).

Conversely:
Suppose that for x,, x, € X, f(x) = f(x,)

= f(x)—f(x;)=0

= f(x,—x,)=0

= x,—x,€ N(f)

= (5 —x)+N(f)=N(f)

= x,+N(f)=x,+N(f)

= x=x,+0e x, + N(f)=x,+N(f),x,e x, + N(f)
Hence, x,,x, € X belong to the same element of the quotient
space X /N (f).

B- letf:X — Kbe a non zero linear functional on X , then
dim( X /N(f)) =1,

Proof:

We want to prove that X/N(f)=span{x, + N(f)} for some
x, &€ N(f)

Clearly, spanix,+N(f)}c X/N(f) (1)

Now, let ye X/N(f)

y=x+N(f)forsome xe X , from(1.4.3) x=ax,+y,,y,€ N(f)
= y=x+N(f)=ax,+y +N(f)=ax,+ N(f)=a(x,+ N(f))
ye spani{x, + N(f)} = X/N(f) < spani{x, + N(f)} (2)
Hence, from (1) and (2) we get X /N (f) = span {x, + N (f)},
sodim( X /N(f))=1.
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C- Let f, f, be two non-zero linear functional on the same vector space
such that N (f,) = N(f,), then f,and f, are proportional.

Proof:

Since f;, f, # 0, thendx, € X such that f,(x,) =0
Since N(f,) = N(f,), f,(x,) #0
from theorem (1.4.3) any x€ X,x=ax,+ yfor some scalar a,
ye N(f)
X = Mxn +y
fi(x,)

ye N(f))=N(f,)= f,(y)=0
Now,

Si(x)
f(x) Fr(x,)+ ()

_ Lx)
= fz(x) fl(xo)

fz(x) =

Ji(x).

Remark (1.4.4)

Note that if Y is a subspace of vector space X and f is a linear
functional on X such that f(Y) # K ,then f(y)=0forallye Y.

Indeed suppose thatdy, € ¥ < X such that f(y,) = @, # 0, then for
any S € K = /3=a£040 =§f(y)= f(aﬁy)e f )
= K = f(Y), a contradiction

= f(y)=0 Vye Y.
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Fundamental theorem for normed and Banach spaces

2.1 Zorn's lemma

Definition (Partially ordered set, Chain) (2.1.1)

A partially ordered set is a set M on which there is defined a partial
ordering, that is a binary relation which is written (<) and satisfies the
conditions:

a < aforevery ae M (Reflexivity)
If a<bandb <a,then a=> (Antisymmetry)
If a<bandb <c,then a<c (Transitivity)

*If neither a < bnorb < aholds, then aand b called incomparable
elements, in contrast, two elements a and b are called comparable
elements if they satisfy a < b or b < a (or both).

*A totally ordered set or Chain 1s partially ordered set such that every
elements of the set are comparable.

*An upper bound of a subset W of a partially ordered set M is an
element u € M such that

x<u for every xe W
*A maximal element of M is an m € M such that
m < x implies m=x

Examples:

(a) Let M be the set of all real numbers and let x < y have a usual
meaning, M is totally ordered, M has no maximal element.

(b) Let P(X)Dbe the power set (set of all subset) of a given set X and
let A< BmeanA c B, that is Ais subset of B, then P(X) is
partially ordered, and the only maximal element of P(X )is X .

(c) Let M be the set of all ordered n-tuples {x=(&.... £,|6, € R}, and

x < ymean &, <7, for everyi =1,..,n, where &, <7, has its usual
meaning, M is partially ordered, M has no maximal element.

(d) LetM = N, the set of all positive integers, let m < nmean
thatm dividesn , N is partially ordered.
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Zorn's lemma (2.1.2)

Let M be a partially ordered set, suppose that every chainC < M has
upper bound, than M has at lest one maximal element.

Definition (2.1.3)

A sublinear functional is a real-valued functional p on a vector
space X which is
*Subaddative, that 1s

p(x+y)< p(x)+ p(y) Vx,ye X.
*Positive-homogenous, that is

p(ax) = ap(x) Vae R,a>0,xe X.
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2.2 Hahn-Banach theorem

Hahn-Banach theorem (Extension of linear functional) (2.2.1)

Let X be a real vector space and p a sublinear functional on X ,
furthermore, let f/ be a linear functional which is defined on subspace
Z of X and satisfies:

f(x)< p(x) Vxe Z
Then f has a linear extension f from Z to X satisfying:
f(x)< p(x) Vxe X

~

Thatis, f is a linear functional on X , satisfying
F(x)<px)onX ,and f(x)= f(x)  VxeZ.

Proof:

We shall prove:
(a) The set E of all linear extensions g of f satisfying g (x) < p(x) on
their domain D (g) can be partially ordered and Zorn's lemma yields a

maximal element f of E.

(b) f is defined on the entire space X .
(c) An auxiliary relation which was used in (b).

We start with part (a)
Let E be the set of all linear extensions g of f which satisfy the
condition:

g(x) = p(x) Vxe D(g)
Clearly, E # ¢ since f € E ,
On E we can define a partial ordering by & < 7 meaning & is an
extension of g ,

= By definition, D(g) < D(h) and h(x) = g(x) Vxe D(g)

LetC c E is chain, we define g by
g(x)=g(x) if xe D(g) (ge C)
¢ is linear functional, the domain being
D($)=|JD(g)
geC
which is vector space, since C is a chain,
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The definition of g is unambiguous, Indeed, for an x€ D(g,) N D(g,)
with g,,8, € C, we have g,(x) = g,(x),

and g, < g,org, < g, since C is chain

Clearly, g < g forallg € C since D(g) < D(g) forall g€ C

=> £ is an upper bound of C

Since C < E was arbitrary, then by Zone's lemma E has a maximal

element f , and by the definition of E

= f is linear extension of f which satisfies:
f(x) < p(x) Vxe D(f).

(b) We want to show that D ( f)isall of X ,
Suppose that this false

= dy,such that y, € X — D(f)
Consider the subspace Y, of X spanned byD(f )and y,

Note that y, # 0, sinceO € D(f)
Now, any x € Y, can be written

x=y+ay,  ye D(f)
This representation is unique, since
Let x = y+ayand x = y'+ fy, y,y'€ D(f)

= y+tay, =y +py = y-y=(B-a)y,

Since y, € D(f),y—y’ € D(f), then the only solution is
y=y =0andf-a=0=y=yand f=a,

Hence the representation is unique.

Now, a functional g, on Y, is defined by

g, (y+ay)= f(y) + ac (1) where c any real constant
g, is linear, since for x,x, € ¥, = x, = y+ay,,x, = y' + By,
1- g, (x +x,) =g, (y+ay)+ (Y + By) =g (y+y)+(a+B)y)
=fy+y)+(@+Be=FfM+ F(Y)+ac+Be  since f is linear
= g,(x)+ g,(x,).
2-g,(rx) = g,(r(y+ay)) = g,(ry + ray)) = f () + rac
= rf( y)+ rac sincefis linear

= r(f(y) +ac) = rg,(x,). , where r is any scalar.
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Now, fora =0 = x=y = g,(y) = f(y), then g, is proper extension
of f ,since D(f) < D(g,)
Now, if we can prove that g, € E by showing that

g (x) = p(x) Vxe D(g,)
this will contradict the maximality of f , SO thatD(f) # X is false
and D(f) = X is true.

(c) We must finally show that g, with a suitable ¢ in (1) satisfies:
g (x) = p(x) Vxe D(g,)
consider any y,z€ D(f)
= fM-f=fy-2<ply-2)=py+y -y —2)
S p(y+y)+pl=y —2) since p is sublinear
= -p=y—)-f@D<ply+y)-fy)
where ¥, 1s fixed, since y does not appear on the left and z not on the

right, if we take the supremum over z € D(f)on the left (call it m,)

and the infimum over y € D(f) on the right (call it m, )
thenm, < m and for a ¢ with m, < c < m,

= -p(-y,—2)—-f(z)<c  Vze D(f) (2)
c<ply+y)-f(y)  Vye D(f) (3)

Now, for @ < 0 and z replaced by @'y in(2)

1 ~ 1

= —p(=y _Ey)_ f(;y) < ¢, multiplication by — & > 0
1 ~ 1

= op(-y,——y)+af(—y)s-ac
o o
1 ~

= ap(—yl—;yﬂf(y) < —ac

= f(y)+ac<—ap(~y, —éy)

= g,(x) < play, +y)
= g,(x) < p(x).
fora > 0 and y replaced by @'y in (3)
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1 ~ 1
= cs P(;y+ yi) = f(;y), multiplication by & > 0

1 ~ 1
S ac<ap(—y+y)—af (—y)
a a

= ac< p(y+ay)— f(y)

= f(y)+ac< p(y+ay)
= &(x) = p(x).
fora = O we havexe D(f) and nothing to prove.

Applications:

A- A sublinear functional p satisfies p(0) = Oand p(—x) = — p(x).

Proof:

Since p is sublinear functional p: X — R

= p(x+y)< p(x)+ p(y) Vx,ye X
and p(ax) = ap(x) Vae R,a>0,xe X
let @ =0

p(0)=pOx)=0p(x)=0
and

0=p@0)=px—x)< p(x)+ p(=x)

= p(=x) 2 —p(x).

B- If a subadditive functional p on a normed space X is continuous at
0 and p(0) = 0, then p is continuous forallxe X.

Proof:

Let x, be an arbitrary (but fixed) point in X , we want to show that p is
continuous at x, ,
so let € > 0 be given, since p continuous at 0

= 36 > 0 such that if Hy—0H< d,y€ X, then ‘p(y)‘< €
thus, of y = x — x,

Hx—xOH<5:>‘p(x—x0)‘<8 (1)
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Now,
p(x)=px—x,+x,)< p(x—x,)+ p(x,)
= p(x)—p(x,) < p(x—x,) (2)
and
p(x,)=plx,—x+x)< p(x,—x)+ p(x)
= p(x)-p(x,)2-plx—x,) (3)
then, from(2) and (3)we get
- p(x—x,)< p(x)—p(x,) < p(x—x,)
= [p(x) = p(x,)| <|p(x-x)[<e  from (1)

-44-

hence p 1is continuous at x,, and since X,an arbitrary, then p is

continuous for allxe X.

C- If a subadditive functional defined on a normed space X is

nonnegative outside a sphere {xmxH = r}, then it is nonnegative for

allxe X.
Proof:

Letp: X — R, be a subadditive functional defined on a normed

space X , and let p(x) = Ofor x such that|x|> r
we want to prove that p(x) 2 0for xe X
(a) Letx € X such that|x| = r

- 2ed- 2055 P20 fom@)
= 2p(x)20= p(x)20
y
(b) Let y € X,y # Othen, ‘)’H‘ =r H)’H =r= p(rH_i’H) 20 fI'Om(a)

r

= P()20=p(y)20  for ye X,y 20

H
if y=0= p(0)=0
Then, from (1), (a) and (b) p(x) =0 Vxe X.
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D- If pis sublinear functional on a real vector space X , then there

exists a linear functional f on X suchthat — p(—x) < f(x) < p(x).

Proof:
From theorem (2.2.1) we have  f (x) < p(x) (D

and — f(x) = f(—x) < p(—x) since f is linear
= f(x)2-p(-x) (2)
from (1) and(2) we get — p(=x) < f(x) < p(x).

E- Letp be a sublinear functional on a real vector space X , and
let f be defined onZ = {XE X‘x =ax,,0 € SR} by f (x) = ap(x,) with
fixed x, , then f is a functional on Z satisfying f(x) < p(x).

Proof:

First we want to prove that f is linear functionalonZ , f : Z — R
Letx,ye Z=>x=0ox,,y=px,,a,feR=>x+y=(a+B)p(x,),
and let r is any scalar

I- f(x+y)=(a+pP)px,)=0ap(x,)+ bp(x,)= f(x)+ f(y)

2- f(rx) = rap(x,) = rf (x), hence f is linear functional on Z .

Now we want to prove that f (x) < p(x),

Since f(x) =ap(x,), x = ax,

ifa 20= f(x)=ap(x,) = plax,) = plx)= f(x)= px) ey
ifa<0=-a>0

= f(x)=ap(x,) =-(-a)p(x,) = —p(-ax,) = —p(=x) < p(x)

= f(x) < p(x) (2)

from (1) and (2) we get f(x) < p(x).
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2.3 Hahn Banach theorem for complex vector spaces and
normed spaces

Hahn Banach theorem(Generalized) (2.3.1)

Let X be a real or complex vector space and p a real-valued functional
on X which is subadditive, that is

p(x+y)< p(x)+ p(y) Vx,ye X (1)
and for every scalar a satisfies

p(ax) = |a|p(x) (2)
Furthermore, let f/ be a linear functional which is defined on a subspace
Z of X and satisfies

f(O)|<p(x)  VxeZ (3)
Then, f has a linear extension f from Z to X satisfying
Flspx)  vxex (4)

Proof:

(a) Real vector space:
If X is real, the situation is simple

f(x)<|f )< p(x) from (3)
= f(x)< p(x) Vxe Z

then, by theorem (2.2.1) there is a linear extension f from Z to X such
that

f(<px)  VxeX (5)
Now, — f(x) = f(=x) < p(-x) = —1p(x) = p(x) from (2)
= —f(x) < p(x)
= f(x)2-px) (6)
Then from (5) and (6)
= —p(x) < f(x) < px)
= [7oo|< po).

(b) Complex vector space:
Let X be complex, then Z is a complex vector space, too
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= [ is complex-valued
= we can write f(x)= fi(x)+if,(x) xe ”Z

where f; and f, are real-valued
for a moment we regard X and Z as real vector space and denote them

by X, and Z, respectively, this simply means that we restrict
multiplication by scalars to real numbers (instead of complex numbers),
since f is linear onZ , and f,, f, are real-valued= f,, f, are linear
functional on Z , also f,(x) < |f ()|
= fi(x) < p(x) Vxe Z, from (3)
= by theorem (2.2.1) , there is a linear extension ]?1 of fifromZ, to X, ,
such that
fi(x) < p(x) Vxe X, (7)
this take care of f,and we now turn of f,
Now, returning to Z and using f = f, +if,, we have for everyx € Z
i[f,00) +if, (0] = if (x) = [ (ix) = f,(x) +if, (ix)
= if\ (x) = f,(x) = f,(ix) +if, (ix)
the real parts on both sides must be equal
= —f,(x) = fi(ix)
= fo(x)=—f(ix) Vxe Z ()
= f(x) = f(x)—if, (ix)
= if for all x € X we set
f ()= fi(x)—if,(ix) 9)
then from(8)  f(x)= f(x)on Z
this shows that j7 is an extension of f from Z to X , now we want to
prove that:
(a) f is linear functional on the complex vector space X .
(b) f satisfies (4) on X.
To prove (a)let x,ye X and o€ C,a = a+ib a,be R
fty) = A+ =ifiix+y)  from(9)
= [,(x)+ Fi(») —i(J,Gix) + f,(iy))
= [0 =i, () + J,(0) = if, (iy)
= f(x)+ F(y).
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and,
flax) = f((a+ib)x)

= f(ax + ibx)
= fl(ax + ibx) — ifl(iax —bx)
= af,(x) + bf, (ix) — i[afl(ix) —bfl(x)]
= af,(x) + bf, (ix) — iaf, (ix) + ibf,(x)
= a[fl(x) — ifl (ix)]+ b[]ﬁ"1 (ix) + ifl(x)]
= a|F ()= iF (o |+ ib|F o) - (i)
= a+ib [fl(x) — ifl(ix)]: aof (x).

Hence, f 1s linear.

To prove (b)

1- for any x such thatf(X) = 0 this holds, since p(x) = 0.

2- Letxe X such that f (x) # 0, then we can write f by using polar
form of complex quantities

Fo=|F e’
= |F (0| = Fe™ = Fex)
since ‘f(x)‘ is real, then f (¢ "x) is real

= f(e_iex) = ﬁ(e‘iex)

Now,
7| =Fe™x) = Ji(ex) < plex) from (7)
= ‘e‘“"p(x) from (2)
= p(x)
Hence ‘f(x)‘ < p(x) Vxe X.

Hahn-Banach theorem (Normed space) (2.3.2)

Let f be a bounded linear functional on a subspaceZ of a normed

space X , then there exists a bounded linear functional f on X which is
an extension of f to X and has the same norm
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7], =01,
where

7], =swl|Fcof 7l =suplf ol

[l=t Jel=t

(and||f |, = O in the trivial case Z = {0}).

Proof:

IfZ = {0}, then f = 0 and the extension is f = 0.
Now, letZ # {0}, we want to use theorem (2.3.1), for all xe Z we
have

[F <1,
This 1s of the from (3) in theorem (2.3.1)
p () = |f], I+
p Is defined on all of X , and p satisfies (1), since by the triangle
inequality
pGet ) = £, [+ vl < 1, A+ D
=+ T = peo+ P,
p also satisfies(2) because
peax) = | 1], o] = kel 1, = lalp (.
Hence, we can apply theorem (2.3.1), that mean there exists a linear
functional  on X which is an extension of f and satisfies
Fof< peo =71, I xe X

Taking the supremum over allx€ X of norm 1, we obtain the
inequality

|7], = sue| 7ol < 1], ()
xe X
[ x[l=1
and since under an extension the norm cannot decrease, we also have
17, =lr1, (b)

hence, from(a) and (b) we get

171, =11,
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Definition (2.3.3)

The dual space X ~of a normed space X consists of the bounded linear
functionals on X .

Theorem (Bounded linear functionals) (2.3.4)

Let X be a normed space and x, # 0 be any element of X , then there

exists a bounded linear functional f on X such that

~

I7|=1 o=

xO

Proof:

Let Z = {X‘x = ox, }where a 1s a scalar, Z subspace of X ,
we define a linear functional f : Z — R, by

J(x)= flax,) = a|x, (D)
f is bounded and has norme =1 because
£ o] = | (@) = lelx, || = o, | = ]
|£]/= sup| £ ()| = sup x| =
=1 J+l=1

and from theorem (2.3.2), f has linear extensionffromZ toX , of
norm HfH =|f]=1
and from (1) we see that

f(x,)=f(x,)=

x, ||

Corollary (Norm, zero vector) (2.3.5)

For every x in a normed space X , we have

o] = sup L)
rex |71

Hence if x, is such that f (x,) =0 forall f € X , thenx, = 0.
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Proof:
From theorem (2.3.4), we have, writing x for x,
Pl b _
ap > W
17l
and from|f (x)| < | f||x] we obtain
p ‘ﬂ e
so, from (1) and (2) we get
o (x)\
|l = sup.

Applications:

A- Let p be defined on a vector space X and satisfy
p(x+y) < p(x)+ p(y) Vx,ye X
and p(ax) =|e|p(x) for every scalar o

Then for any given x, € X there is a linear functional f on X such that

F(x,) = p(x,)and | (0| < p() forall xe X.

Proof:

Letx, € X fixedandZ = {x‘x =ax,,0 € C},
and define f :Z — C by

flax,) =ap(x,)
clearly f is linear functional on Z , also

[f (O] =|f (ax,)|= |ap(x,)| =|a]p(x,)] < |a|p(x,) = plax,) = p(x)
= [f(x)|< p(x)

By theorem (2.3.1), f has linear extension f on X such that
‘f(x)‘ﬁ p(x) Vxe X

andif @ =1, we get f(x,)= f(x,)=1(p(x,) = p(x,).
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B- Let X be a normed space and X its dual space. If X # 0,
then X “cannot be {0}

Proof:

Letx,€ X,x, #0, then by theorem (2.3.4) there exists a bounded
linear functional f on X such that

|f|=1and f(x,)=
since x, #0 = [x,[|#0= f(x,)=0 Vx,€ X (since X #1{0})
Hence f 0= X" = {0}

xO

C- If f(x) = f(y) for every bounded linear functional f on a normed
space X , then x = y.

Proof:
Let f(x)= f(y) Vie X'
= f(x)—f(y)=0 Vie X~
= f(x=y)=0 Vf e X (since f is linear)
= x—-y=0
= x=y.

D- Under the assumptions of theorem (2.3.4) there is a bounded linear
functional f on X such that

f Tand f(x,) =1.

X

o

Proof:

Letx,€ X,x, # 0, then by theorem (2.3.4) there exists a bounded
linear functional g on X such that

l¢]=1and g(x,) =|x,
Now, letf = glx, o , then
Fl=lellx)™ = 1dx]™ = x|
and f(x,)=gx)|x | =[x =1.
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2.4 Open mapping theorem

Definition (2.4.1)

Let X and Y be metric spaces, then? : D(T) —» Y with domain
D(T) c X is called an open mapping if for every open set in D (T') the
image is an open setinY .

Remark (Baire's category theorem) (2.4.2)

If a metric space X # @ is complete, it is nonmeager in itself, hence if

X = U A, , where A, closed, Then at least one A, contains a nonempty
k=1

open subset.

Lemma (Open _unit ball) (2.4.3)

A bounded linear operator7 from a Banach space X onto a Banach
space Y has the property that the image 7 (B,)of the open unit

ball B, = B(0;1) € X contains an open ball aboutO € Y .
Proof:

Proceeding stepwise, we prove:

_ 1
(a) T (B,) contains an open ball, where B, = B(O;E) .

(b) T(B,) contains an open ballVne N , where B, = B(0;27") .
(c) T(B,) contains an open ball aboutO € Y .

1
(a) We consider the open ball B, = B (O;E) C X | any fixedxe X is
in kB, with real k , clearly U kB, < X (DsincekB, € X,Vke N
k=1

k
[x[> 0, then 3k, > 2|x||= [l < 5= then

andlet xe X ,2

xe kB c|JkB, VxeX (2

k=1

Hence, from (1) and (2) we get X = U kB,
k=1
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sinceT is surjective and linear,

= |J¥T (B, = | JKT(B,) ¥ =T(X)

k=1 k=1

= T(O kB,) = O kT (B,) © O kT (B,) = O kT (B,)

sinceY is complete, it is nonmeager in itself, then by (2.4.2)

dk, € N such that k,T (B,) contain an open ball, say

= B(y,:€) = kimyo;a) c Ty =2

o o

(b) From (a) we shown that T (B))contain an open ball,
say B(y,;€) C T(B,) for some y, € T(B,),€ > 0.
Hence, B(0;€) = B(y,;€)=y, cT(B,) -y,
Now, letye T(B,)—y,,theny +y, € T(B,), then there are
u, € B suchthat Tu, —» y+y,
and v, € B, such thatTv, — Yy,

1 1
<—+—=1
2 2

=

0, v <l I,

=>u,—v, € B,
since T (u, —v,)=Tu,-Tv, >y
= ye T(B,)
Hence, B(0;€) = B(y,;€)—y, cT(B)-y, cT(B,) (3)
Now, letB,=B(0:27")c X ,B, =B(0;27")=2"B(0;1) =2""B,
since 7T is linear
= T(B,)=2"T(B,)

£
from (3) we thus obtain V, = B(O;F) cT(B,) (4)

£
(c) We finally prove that V; = B(O;E) c T(By)
Let ye V, c T(B)) from (4),n =1



Chapter 2 -55-

y e T(B,) = Yy isa limit point of T(B,)

= every neighborhood of y contains a point of 7 (B,)

= 3x, € B, such that ||y —Tx,| < 28_2

£
this implies that y —Tx, belong to V> = B(0§2—2) c T(B,)

= y—Tx, is a limit point of 7 (B,)

= every neighborhood of y — Tx, contains a point of 7'(B,)

= 3x, € B, such that ||y —Tx, = Tx, | < 28—3

£
this implies that y —Tx, — Tx, belong to V5 = 3(0;2—3) c T(B5)

and so on ,in the 7 th step we can choose an X, € B, such that

Z Tx, (5)

i=1

£
2n+1

<

1
letz, = x, +...+x,, since x, € B, we have ka H <7 F . This yield for

n>m
<Y uf< X -0
k=m+1 k=m+1 2

as m — oo, Hence (z,)is  Cauchy.(z,) converse, say

z, — X because X is complete. Also x € B since B, has radius land

I MEDIE

k=1
since T is continuous, TZ,, — Tx and (5) shows that Tx = y . Hence

ye T(B,).

Open mapping theorem, Bounded inverse theorem (2.4.4)

A bounded linear operator 7 from a Banach space X onto a Banach
spaceY is an open mapping. Hence ifT is bijective, T ' is continuous
and thus bounded.
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Proof:

We want to prove that for every open setA — X the image7 (A) is
open inY , this we do by showing that for every y = Tx € T (A) the set
T (A) contains an open ball about y = Tx

Now, lety =Tx,x € A, since A is open, then A contains an open ball
about x , say

B(x;e)c A
= B(0,;6)=B(x;&)—-xc A—x
= T(B0y;€) cT(A)-Tx

= T(%B(Ox;l)) c T(A)—Tx

= %T(BO) c T(A)-Tx

— T(B,)  e(T(A)—Tx)
But from (2.4.3)
T (B,) contains a ball about 0, , say B(0,;0)
= B(0,:8) c T(B,)  £(T(A)—Tx)

- %B(oy;a) c T(A)-Tx

=N B(Oy;g) c T(A)—Tx
=N B(OY;£)+Tx c T(A)
E

- B(Tx;é) c T(A)
£
Hence, T (A) contains an open ball abouty =7Tx, so T(A)is open

nY .

Finally, if 77':Y — X exists, it is continuous because T is open.
Since T ' is linear, then it is bounded.
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Applications

A- Let X be the normed space whose points are sequences of complex
numbers X = (§,) with only finitely many nonzero terms and norm

defined by|[x| = sup|&i|,

1 e
Let T : X — Y be defined by ¥ = Tx = (51,552, ------- ) = (L

Then T is linear and bounded but 7 ' is unbounded.

Proof:
Letx,ye X,x=(¢,),y =(7,), ais any scalar
LTy = Gz = G = Sz (s = Ty,

2. T (ax) = (i);’; = a(i)j‘;l = aTx.
l l

Hence, T is linear.

Also, |Tx|| = Sup 1=~ 5 < Sup & | =
Let x =(&,)e X = & = 0for all but finite number of &, 's
LetO=Tx —(é: )= &, =0,Vi= x=0_hence T is one to one, then

U R(T) - X exists.
Let y=(n,)e X = n, =0 for all but finite number of 77, 's
= (in;)e X and T(in;) = (1,),so T is surgective.
Now, let 77 : R(T) = X is defined by x =T "' (y) = (in7,)},

1
U k=n
Lety, € X,y, =@, ,...n",..) , whereTx =7
0 k #n
= |y.|=—

and T7'(y,) = (0,0,....., 0,1,0,.....) where lis the n th term
= T(O,O’I’O’) =Y
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] Y] N G|
HT 1” = sygg HyH > y = % =n Vne N
y

— T 'is unbounded.
This example does not contradict the open mapping theorem, as X is
not Banach space.

B- Let T:X — Y be a bounded linear operator, where X andY are
Banach spaces. IfT is bijective, then there are positive real
number a and b such that

C’HXH = HT(X)H < beH forallxe X.

Proof:

Since T is bounded, then 3b such that [T (x)|<b|x| Vxe X (1)
And since T is bounded linear operator from a Banach space X onto a
Banach spaceY , then T ' is bounded, so 3 & such that

HT_I(y)HS O{HyH VyeY,y=Tx
forallxe X = [x| =TT (x)| < &|T ()],

puta = é = alx|<|T(x)| Vxe X (2)

Hence, from (1) and (2) we get
a|x|| < T (x)| < b||x]| forallxe X.

C- Let X and Y be Banach spaces and T :X — Y an injective
bounded linear operator, then 7' : R(T) — X is bounded if and only
if R(T)isclosedinY .

Proof:

Suppose thatT ' : R(T) = X is bounded, and lety € R(T) , then there
is the sequence (y,)in R(T)such that y, — y.since y,€ R(T),
y,=Tx,,x, e X =>x, =Ty,

Now, since (¥, ) is convergent, it is a Cauchy sequence. Hence

e, —x =Ty =Ty =T G = v < [T Iy = vl since
T ~'is bounded
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therefore, if € > 0is given 3k, € N such that Vn,m 2 k,
‘ £

Vo= Val < =g
x,—x,| <€, so (x,)is Cauchy sequence in X ,

I

which implies that
and hence is convergent since X is Banach space, say x, — x

= y, = Ix, converges to Tx
By the uniqueness of the limit 7x = y = y € R(T') = R(T) is closed.

Conversely

Let R(T)is closed inY, then R(T)is Banach space so that
T :X — R(T)is a bijective bounded linear operator defined from a
Banach space X onto a Banach space R(T') , hence by open mapping

theorem 7 ~'is bounded.
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2.5 Closed Linear Operators, Closed Graph Theorem

Definition (Closed linear operator) (2.5.1)

Let X andY be normed space and 7 : D(T') — Y a linear operator with
domain D(T) € X , ThenT is called a closed linear operator if its
graph

9(T)={(x,y):xe D(T),y =Tx}
is closed in the normed spaceX XY , where the two algebraic
operations of a vector space in X XY are defined as usual, that is

(xp y1)+(x2, yz) = (Xl + X,y t+ yz)
a(x,y) = (ax,ay)

(a a scalar) and the norm on X XY is defined by
e, = x|+ [k

Remark (2.5.2)

A subspace M of a complete X is itself complete if and only if
M closedin X .

Closed Graph Theorem (2.5.3)

Let X andY be Banach spaces and7 : D(T') — Y a closed linear
operator, where D(T)c X , then ifD(T)is closed inX , the
operator 7" is bounded.

Proof:

We first show that X XY with norm defined byH(x,Y)H = HXH"‘HYH is
complete,
Let(z,)be Cauchy inX XY, wherez,=(x,,y,), then for

every € > 0, there isk, € N such that

zn—zmH= xn—me+ yn—ymH<8 m,n >k, (1)
Hence (x,)and (y,)are Cauchy in X and Y respectively, and

converge. Say X, = xandy, — Y, because X andY are complete.
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This implies that z, = z =(x,y)since from (1) withm — o we

have

z,—z| <€, forn>k,, Since the Cauchy sequence(z,)was
arbitrary, hence X XY is complete.

By assumption, ¥(T') is closed in X xY and D(T) is closed in X
Hence J(T)and D(T) are complete by (2.5.2),
We consider the mapping
p:0(T)— D(T)
p(x,Tx) =x
p 1s linear, p i1s bounded because
[P e T = [l < e+ 7]} = flce 700}

p 1s bijective; in fact the inverse mapping is
p™ i D(T) = &T)
p(x) = (x,Tx)
Since 9(T') and D(T) are complete, we can apply the bounded inverse
theorem (2.4.4) and see that p~' is bounded, say

|G, T)| < b || for someb and all x e D(T')
HenceT is bounded because
x| < [[7ee |+ ]| = e, 70| < ]| Vxe D(T).

Theorem (Closed linear operator) (2.5.4)

LetT : D(T) — Y be a linear operator, where D(T) < X and X and
Y are normed spaces, thenT is closed if and only if it has the following

property:
Ifx, =& xwherex, € D(T),and7x, — y,thenxe D(T)andTx = y.

Lemma (Closed operator) (2.5.5)

Let T:D(T')— Y be abounded linear operator with domain
D(T)c X ,where X and Y are normed spaces, then:

(a) If D(T) is closed subset of X , ThenT is closed.

(b) IfT is closed and Y is complete, then D(T') is a closed subset of X .
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Proof:

(a) If (x,)is inD(T)and converges, sayx, — xand is such that

(Tx,) also converges, thenx € D(T) = D(T)since D(T)is closed, and
Tx, — Tx sinceT is continuous , Hence T is closed by theorem (2.5.4)

(b) For x € D(T) there is a sequence (x,)in D(T) such that x, — x,
since T is bounded

[, =T, | = [T (x, = 2,0 < ||
This show that(7Tx,)is Cauchy, (Tx,)converges, SayTx, > yeY
because Y is complete. SinceT is closed, x € D(T) by theorem (2.5.4)

X, =X, |

and7x = y , Hence D(T) is closed because x € D(T') was arbitrary.

Remark (2.5.6)

Closedness does not imply boundedness of a linear operator.

Example:
Let X = C[0,1]and T : D(T) — X is defined by
T(x)=x
wherexe D(T) < X, D(T)is subspace of functionsxe X which
have continuous derivative, Then T is not bounded, but is closed.

Proof:

We see from (1.3) thatT is not bounded.

To prove thatT is closed by appling theorem (2.5.4)

Let (x,)in D(T) be such that both (x,) and (Tx, ) converge, say
x, = x and Tx, =x, =y

Since convergence in the norm of C [0,1]is uniform convergence on

[0,1], from x, = y we have

t

[y@dz = [limx) (x)dz = lim [ x,(£)d7 = x(t) - x(0)

n—o0

That is X(t) = x(0) + j y(r)dT
0

This show that x€ D(T)andx” = y , by theorem (2.5.4) T is closed.
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Remark (2.5.7)

Boundedness does not imply Closedness of a linear operator.

Example:

LetT : D(T) — D(T) < X be the identity operator on D(T), where
D(T) is a proper dense subspace of a normed space X , then T is linear
and bounded butT is not closed, this follows immediately from theorem
(2.5.4) if we takexe X —D(T)and a sequence(x,)inD(T) which
converges to x .

Lemma (2.5.8)

Let X andY be normed spaces, and let 7 : D(T') — Y be a closed linear

operator, D(T) c X . If T':R(T) = X exists, it is a closed linear
operator.

Proof:

We have see from theorem (1.2.5(b)) if T~': R(T) = X exists, it is
linear.

To show that T ™' : R(T) = X is closed

Suppose that T is a closed operator, and let(y,) be a sequence in R(T")
such that (,) convergestoy € Y, and(T '(y,)) convergestoxe X ,
then y, = Tx, for some x, € D(T)

Hence (x,)=(T"'y,)is sequence in D(T) which converges toxe X
sinceT is closed, and(y,)=(Tx,) converges toy, we must
havey = Tx . Thatisye€ R(T)=D(T"") ,hencex =Ty

This implies that7 ~' is closed by theorem (2.5.4).
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Applications

A- The Null space N(T') of a closed linear operator7 : X — Y is a
closed subspace of X .

Proof:

Letxe N(T)then there exist a sequence (x,) in N (T') such that
X, > X

Now, T'(x,) =0,Vne N sothat T(x,) > 0

Since T is closed, then x€ D(T), and 0=T(x) = xe N(T),
then N (T') is a closed subspace of X .

B- LetT be closed linear operator with domain D (7') in a Banach space

X and range R(T') in a normed spaceY .IfT ' exists and is bounded,
then R(T') is closed.

Proof:

Suppose that7 ' : R(T) = D(T) exists,

SinceT : D(T) — Y is closed, thenT 'is closed linear operator by
lemma (2.5.8), Since T~' : R(T) — D(T)is bounded and closed linear
operator, so D(T ') = R(T) is closed by lemma (2.5.5(b)).

C- If T:X —»Yis a closed linear operator, where X and Y are
normed space, andY is compact, then 7 is bounded.

Proof:

Since Y is compact, thenY is complete, so7 ' (Y) = X = D(T)is closed
by lemma (2.5.5),
Hence T is bounded by theorem (2.5.3).
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