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Feed efficiency is an economically important trait in aquaculture, which can be measured traditionally as feed
conversion ratio (FCR). Because of the difficult measurement, genome-wide selection using quantitative trait
loci (QTLs) affecting FCR may be an alternative for genetic improvement. In the present investigation, QTLs for
FCR based on two mapping panels (mirror carp and hybrid carp panels) were found in common carp (Cyprinus
carpio L.). After that, candidate genes were identified by comparative genomics. A total of nine QTLs, two ge-
nome-wide and seven linkage group-wide, were detected in eight linkage groups (LGs) in the mirror carp
panel (FAM-A, n = 68) and nine QTLs, four genome-wide and five linkage group-wide, were detected on eight
linkage groups of the hybrid carp panel (FAM-B, n = 92). Two genome-wide QTLs affecting FCR were identified
in two LGs (Lg1 and Lg21) in FAM-A, which explained 32.3% and 35.6% of the phenotypic variation respectively;
four genome-wide QTLs affecting FCR were detected in four LGs (LG5, LG21, LG24, and LG33) in FAM-B which
explained 29.3%-33.4% of the phenotypic variation. All of eight QTL regions from FAM-A were aligned to the
high-resolution linkage map with whole genomic scaffold and all genes mapped on, and 18 genes associated
with growth or metabolic function were identified using the whole-genomic browser on http://www.
carpbase.org/gbrowse.php. We believe that these 18 genes are valuable candidate genes affecting feed efficiency,
that might be used in MAS programs to improve performance in common carp.

Statement of relevance: All animal experiments was carried out in accordance with the National Institutes of
Health guide for the care and use of Laboratory animals (NIH Publications No. 8023, revised 1978) and it is hereby
clearly indicated that such guidelines had been followed.
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1. Introduction in production per unit area, decrease feed cost, as well as reduced envi-

ronmental impact (Basarab et al., 2003). The most commonly used mea-

Feed cost is a major input, often comprising 30% to 70% of the vari-
able costs in almost an animal production system, including aquaculture
(Goddard, 1996; Doupé and Lymbery, 2003). Improvements in the effi-
ciency of feed utilization would lead to increased economic returns in
the fish production system. Selection of efficient animals not only im-
proves the producer's profitability, but can lead to significant increases
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sure of feed efficiency has traditionally been feed conversion ratio (FCR),
which is the ratio of feed consumed to gain body weight. Selection to
improve FCR has the potential to increase growth rate in young animals
because the two traits (growth rate and feed conversion) are genetically
correlated (Sherman et al., 2014). More parameters can be evaluated to
quantity feed efficiency in domestic animals, but it is difficult for aqua-
culture because of difficult manipulation (Sun, 2010). So, at present,
the FCR is most important in aquaculture for the description of growth
as a function of feed intake.
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Feed conversion efficiency is a heritable trait in fish, and very high
genetic correlations are found between growth rate and feed conver-
sion, frequently ranging from 0.80 to 0.95 (Andersen, 1977; Vangen,
1984; Crawford, 1990). Based on its heritability and substantial pheno-
typic variation, FCR has the potential for inclusion in selection criteria to
improve feed efficiency and the profitability of fish production (Ponzoni
et al,, 2008; Saatchi et al., 2014; de Oliveira et al., 2014). However, indi-
vidual feed intake measurements are needed for direct selection, and
these are complicated to apply. This problem could be resolved if genet-
ic markers predictive of feed intake were available. Consequently, there
has been considerable recent research to develop genetic markers that
can be used to select animals for improved feed efficiency.

In most aquaculture species, feed accounts for about 65-75% of the
total production cost (Gjedrem and Baranski, 2009). Even in the salmon
production industry, feed accounts for about 50% of the total cost (Ma-
rine Harvest, 2012). However, feed conversion rate is difficult to mea-
sure on selection candidates, although it has major effects on the
productivity and profitability of many aquaculture species (Yue,
2014). Feed intake of each individual is generally difficult to measure
in aquaculture species due to unequal feed intake over days and the re-
quirement of a single tank to raise each fish in each of the reference
families.

Improving the feed efficiency trait not only will decrease the
farmer's stocking expenses, but also will shorten the rearing period
(Laghari et al., 2014). Progress to identify FCR-related genetic markers
has been made by assessments of single markers and genome scans. Al-
though a few QTLs associated with feed efficiency traits in common carp
(Cyprinus carpio) have been reported (Laghari et al., 2014), not all of the
genetic variation in these traits has been captured because of inade-
quate sample size or studies limited to a single population. The extent
of genetic variation for feed efficiency traits among different common
carp populations remains unexplored. In recent years, various genome
resources and genetic tools have been developed to facilitate genetic
improvement and breeding programs, including multiple versions of
linkage maps (Sun and Liang, 2004, Zhang et al., 2013b; Zheng et al.,
2013), a BAC-based physical map (Xu et al., 2011; Li et al., 2011),
cDNA microarrays (Williams et al., 2008), and a SNP genotyping array
(Xuetal,, 2014a). Moreover, the genome of Songpu mirror carp, a strain
derived from the European subspecies (C. carpio carpio) of common
carp, has been completely sequenced, providing the first reference ge-
nome for common carp genetic and genomic studies (Xu et al.,
2014b). These research contents provide opportunities to identify
trait-associated genetic markers and candidate genes.

In this study, QTL intervals related to the FCR trait were researched
on two matched linkage groups of two small families of common carp.
These two panels were constructed from full-sib families from mirror
carp (FAM-A) and a hybrid, produced by crossing Heilongjiang carp
and Hebao carp (FAM-B). Further, some candidate genes for FCR were
predicted by comparative genomics using a high-density genetic map
and a reference genome.

2. Materials and methods
2.1. Animals and phenotypic data

A total of 160 individuals from two full-sib families were used in this
analysis. Out of these, 68 offspring were from FAM-A and 92 from FAM-
B. FAM-A was a mirror carp panel obtained from the Songpu Aquacul-
ture Experimental Station, Harbin, China. FAM-B, consisting of hybrids,
was produced by crossing one distantly related male Heilongjiang
carp (Cyprinus carpio var. haematopterus) to one female Hebao carp
(Cyprinus carpio var. wuyuanensis).

The fish were stocked individually, in order to achieve accuracy of
feed consumption, in a series of re-circulating aquarium systems, each
with a size of 0.5 m>. The initial average body weight (BW) was
60.27 + 1842 g and 82.28 + 18.84 g for FAM-A and FAM-B,

respectively. Experimental fish were fed with a local commercial feed
(Tongwei Feed, The feed contain >34% crude protein and 5% crude fat,
which meets aquaculture industry standard of China: the formula feed
for common carp (SC/T1026-2002).) thrice a day (9:00 am, 12:00noon
and 3:00 pm) of 10% BW during the experiment. All the conditions of
the tanks, such as water temperature (22 °C) and water flow rate
(1m*!), were regularly maintained throughout the experiment. Left-
over feed and faeces in each tank were siphoned out daily. The water
levels in the aquariums were maintained on a daily basis and a complete
water change was done every week. The residue of feed was collected
and dried at room temperature and deducted from the feed weight sup-
plied to know the accurate feed consumption of fish. The BW measure-
ments of individual fish were taken fortnightly on an electronic scale
(Kern 572) for the period of three months. The FCR was calculated
from the relationship of feed intake and weight gain, by the following
formula:

FCR = mlw—mOw/mcw

(m1w=final mass and mOw =initial mass; mcw =
amount of food consumed)

2.2. Update of FAM-A linkage map

The FAM-A and FAM-B linkage maps were separately constructed by
Jin et al. (2012) and Zhang et al. (2013a, 2013b). The FAM-A linkage
map covered 62 linkage groups with a total of 507 markers (186 SSRs
and 321 SNPs). The FAM-B linkage map covered 51 linkage groups
using a total of 307 markers (140 SSRs and 167 SNPs). Genotyping of
the SNPs was performed using the [llumina Golden Gate assay on the
Bead Station 500G Genotyping System (Illumina Inc., San Diego, CA), ac-
cording to the manufacturer's protocol for the Golden Gate assay (Shen
et al., 2005). Microsatellite markers were genotyped using the ABI 3730
DNA sequencers (Applied Biosystems, Foster City, CA).

101 SSR markers selected from the FAM-B linkage map (Zhang et al.,
201343, 2013b) and the high-density map (Xu et al., 2014b), were poly-
morphic and genotyped in the FAM-A family by using ABI 3730 DNA se-
quencers (Applied Biosystems, Foster City, CA) in order to further
similarity search between FAM-A and FAM-B. These markers were
used to update the FAM-A linkage map. The updated linkage map in
FAM-A was constructed by JoinMap version 4.0 (Van Ooijen, 2006).
There were three possible segregation patterns for parents (1:1; 1:2:1;
1:1:1:1) for performing linkage analysis with default significance levels
of 3.0-8.0 LOD with a step of 1.0. The final linkage maps were construct-
ed using LOD thresholds of 4.0. A Student's t-test was used to test signif-
icance of differences in the mean recombination fraction between
adjacent markers. The Kosambi mapping function was used to convert
recombination frequencies into map distances (centimorgan, cM). Link-
age groups were graphed using Mapchart version 2.2 (Voorrips, 2002).

2.3. QTL mapping

We then conducted a QTL analysis using the marker genotype data
and phenotypic data for the two families of progeny in MapQTL 6.0
(Van Ooijen, 2009). Multiple QTL model (MQM) mapping was utilized
to detect any significance associated with phenotypic traits and marker
loci in the data sets. Cofactors are selected by multiple regression and
backward elimination. The LOD score significance thresholds were cal-
culated by permutation tests in MapQTL 6.0, with a genome-wide sig-
nificance level of o < 0.01, n = 1000 for significant linkages, and with
a linkage-group-wide significance level of a < 0.05, n = 1000 for sug-
gestive linkages (Churchill and Doerge, 1994; Doerge and Churchill,
1996).
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2.4. Identification of candidate genes

All of the QTL candidate intervals in family FAM-A were selected to
anchor in the high-density genetic map (Xu et al., 2014b), which includ-
ed all common carp genomic data as contigs and scaffolds. To identify
candidate genes, all sequences of these genomic regions (eight QTL in-
tervals) were checked on the carpbase website (http://www.carpbase.
org/index.php). All genes and candidate genes in these genomic regions
were searched manually for gene function in model animals, including
zebrafish (http://www.ncbi.nlm.nih.gov).

3. Results
3.1. Phenotypic trait

The phenotypic values of FCR for FAM-A ranged from 43.3% to 95.1%
with an average of 65.6% + 10.9%, and which accorded with the normal
distribution (P = 0.335). Meanwhile, the mean FCR of the FAM-B was
37.0% + 10.6% (range: 15.1%-65.7%, P = 0.605). The Pearson correlation
between FCR and body weight (BW) was significant in both mapping
panels, i.e, r = 0.725, P < 0.01 and r = 0.756, P < 0.01, respectively,
for FAM-A and FAM-B.

3.2. Construction of linkage map of FAM-A and comparison with linkage
map of FAM-B

A total of 535 markers were mapped to fifty linkage groups of FAM-
A, including 101 new microsatellite markers and 434 published markers
(Jin et al., 2012). The new linkage groups contained between 4 and 40
markers, with an average of 10.7 markers per group. The total length
of the inherited linkage map was 2245.85 cM. The map distance be-
tween markers ranged from 1.52 ¢cM to 160.34 cM with an average of
4.63 cM between markers.

Ninety-two shared markers were assigned in both FAM-A and FAM-
B and used for similarity searches between the two linkage maps. A
total of 24 matched linkage groups with more than two shared markers
were identified between the two maps, providing insight into similar
QTL intervals in the two families (Fig. 1). Two of these 24 matched
groups, two linkage groups of FAM-B were mapped onto unique
group of FAM-A, i.e., Ch 3 and 6 of linkage group FAM-B mapped onto
Lg1 of FAM-A, and Ch 4 and 23 of FAM-B group compared into Lg21 of
FAM-A (Fig. 1).

3.3. QTL analysis in FAM-A

QTLs related to FCR were located on various linkage groups on the
linkage map of FAM-A. Nine QTLs (qFCRM1, qFCRM7, qFCRM12,
qFCRM16, qFCRM21-1, gFCRM21-2, qFCRM30, gFCRM33, and qFCRM38)
related to FCR were identified on eight LGs (Lg1, Lg7, Lg12, Lg16, Lg21,
Lg30, Lg33, and Lg38), as shown in Fig. 2A. Two QTLs, gFCRM21-1 and
qFCRM21-2, were found on Lg21 and all other LGs had only one QTL.
qFCRM16 was found with a minimum flanking marker interval of
1.9 cM between CAFS882 and SNP0919 markers. The minimum and
maximum LOD scores were recorded as 3.62 and 5.47, respectively.
The phenotypic variance ranged from 17.5 to 35.6%. The minimum
QTL confidence interval was found to be 1.0 cM and the maximum
was 12.5 cM in this family (Table 1). Two genome-wide significant
(P<0.01) QTLs (qFCRM1 and qFCRM21-2) were identified and located
on Lgl and Lg21 which explained the largest phenotypic variance
(32.3% and 35.6%), and the distances between the flanking markers
were 1.0 and 5.5 cM, separately.

3.4. QTL analysis in FAM-B

In the hybrid family, nine QTLs (qFCRH5-1, qFCRH5-2, qFCRHS,
qFCRH19, qFCRH21, qFCRH24, qFCRH30, qFCRH33, and qFCRH41)

affecting the FCR trait were detected on eight LGs (Ch5, Ch8, Ch19,
Ch21, Ch24, Ch30, Ch33, and Ch41), which explained 17.0% to
33.4% of the phenotypic variation. The minimum flanking marker
interval of 3.1 cM between SNP1282 and SNP0995 markers was
found for gFCRH5-2, while the maximum flanking marker interval
of 28.3 cM was recorded for qFCRH5-1 between HLJ318 and
SNP1119. The minimum and maximum LOD scores were recorded
as 4.23 and 5.75, respectively. In this family, four QTLs (qFCRH5-1,
qFCRH21, qFCRH24, and, gFCRH33) were observed with genome-
wide significance (P < 0.01). The QTL results are shown in Table 1
and Fig. 2B.

3.5. Similar QTL intervals related to FCR in the two families

Three QTL intervals were identified in similar linkage group re-
gions for FAM-A and FAM-B (Fig. 2C). qFCRM1 of FAM-A and
qFCRH5-1 of FAM-B, qFCRM12 of FAM-A and qFCRH24 of FAM-B,
qFCRM30 of FAM-A and qFCRHS8 of FAM-B are in similar intervals.
One similar genome-wide significant QTL interval was detected in
both families, gFCRM1 of FAM-A, which explained 32.3% of the phe-
notypic variance, and gFCRH5-1 of FAM-B which explained 32.1% of
the phenotypic variance.

3.6. Candidate genes of FCR

To identify candidate genes of FCR, the QTL intervals of FAM-A
were aligned to the high-density linkage map (Xu et al., 2014b) by
shared marker (Fig. 3). To identify candidate genes for FCR, about
900 gene sequences from eight intervals were annotated by compar-
ative genomics. The names of the genes were identified by bioinfor-
matics using the NCBI database. About 168 genes of known function
were identified in all eight QTL regions by bioinformatics, and the
pathway was identified on the KEGG website (http://www.kegg.jp/).
Out of 168 genes, 18 genes with known growth or metabolic func-
tion were selected as candidate genes for common carp FCR traits
(Table 2).

4. Discussion
4.1. Measurement of FCR

Genetic improvement for better strains and varieties is needed
for future aquaculture. About 60 fish and shellfish species have un-
dergone selective breeding, and traits of interest have focused on
growth and other phenotypes (Tong and Sun, 2015). After many
years of aquaculture practice, however some species still have poor
traits including the FCR trait. FCR is an economically important
trait, but has received little attention from breeders, because the
phenotypes for these traits are difficult to measure (Sun, 2010).
Two families' QTL maps for scanning FCR traits and a high-density
map for integrating linkage map and genome resource were used
in this study to reduce the negative impacts of small population on
finding out accuracy QTLs related to FCR.

4.2. Utilization of high density map and reference genome

The markers linked to candidate genes for FCR cannot be chosen di-
rectly from the investigation panel owing to the small numbers of
markers (Fig. 1). By employing a high-density map (Xu et al., 2014b),
900 gene sequences in eight QTL intervals were obtained, and then
eighteen candidate genes were identified with growth or metabolic
function according to the reference genome of common carp (www.
carpbase.org) and the zebrafish model organism databases (http://
www.ncbi.nlm.nih.gov). The key to success is that many similar
markers used in this research panels as well as previous high-density
map (Xu et al., 2014b). Whole-genome data including all known
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Fig. 1. Comparative linkage map of Cyprinus carpio between FAM-A and FAM-B. Comparisons between the two maps are identified by similar markers. Linkage groups of FAM-A are
represented by Lg, and linkage groups of FAM-B are represented by Ch. A total of 24 matched linkage groups with more than two shared markers were identified between two maps.
Of these paired groups, Ch3 and Ch6 of linkage group FAM-B compared to Lg1 of FAM-A; Ch4 and Ch23 of FAM-B group compared to Lg21 of FAM-A.
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Fig. 1 (continued).
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Fig. 2. Putative QTL effects and LOD scores for the common carp genome estimated by QTL mapping. LOD threshold for FCR trait at genome-wide LOD significance (P < 0.01) is shown. A.
QTL mapping with QTL effects and LOD scores for FAM-A with genome threshold LOD value 5.4; two genome-wide QTLs affecting FCR were identified on Lg1 and Lg21 (**). In addition,
seven linkage group-wide QTLs were detected on Lg7, Lg12, Lg16, Lg21, Lg30, Lg33, and Lg38 with different threshold (P<0.05) (*), respectively. B. QTL mapping with QTL effects and LOD
scores for FAM-B with genome threshold LOD value 5.5; four genome-wide QTLs affecting FCR were detected on Ch5, Ch21, Ch24, and Ch33 (**). Five linkage group-wide QTLs were
identified on five LGs (Ch5, Ch8, Ch19, Ch30, and Ch41) (*). C. Locations of QTL intervals related to the feed conversion ratio trait on matched linkage groups of the two families. Three

QTL intervals were identified in similar linkage-group regions for FAM-A and FAM-B. gFCRM1 of FAM-A and qFCRH5 of FAM-B, gFCRM12 of FAM-A and qFCRH24 of FAM-B, gFCRM30 of
FAM-A and qFCRH8 of FAM-B is the similar interval.

genes were aligned with the high-density map, so that candidate genes
could be searched for within genomic regions in these putative QTL-
bearing intervals. We believe that the strategy of alignment a high

density map and searching for genes in the reference genome could re-
duce the sample size and workload. This is especially useful for FCR
traits those require a lot of labor and instrument.
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Table 1
Location of quantitative loci (QTLs) for feed conversion rate (FCR) in Cyprinus carpio L.

Panel QTLname G  95% confidence interval Flanking markers  Flanking marker interval Maximum  Linkage group-wide Genome-wide VE
(cM) (cM) LOD threshold threshold (%)
Mirror qFCRM1 1°  80.8-81.8 SNP1481-SNP1103 5.7 5.33 39 5.1 323
carp qFCRM7 7 24.7-272 SNP1207-CAFS735 5.5 3.67 3.2 5.1 17.5
qFCRM12 12 45.0-46.3 HLJ392-HLJ1093 3.7 422 39 5.1 223
gFCRM16 16 10.7-12.6 CAFS882-SNP0919 3.1 3.95 3.7 5.1 209
gqFCRM21-1 21 24.2-25.3 SNP1392-SNP1055 4.1 3.62 3.6 5.1 17.9
qFCRM21-2 217 27.3-32.8 SNP1055-SNP0818 5.5 5.47 3.6 5.1 35.6
qFCRM30 30 38.0-39.1 SNP0375-SNP0044 5.0 423 4.0 5.1 263
gFCRM33 33  33.4-459 HLJ311-HLJ326 432 4.55 39 5.1 284
qFCRM38 38 21.4-25.4 HLJ377- HLJE253 104 3.62 3.6 5.1 19.4
Hybrid qFCRH5-1 5% 11.5-14.5 HLJ318-SNP1119 283 5.65 3.9 53 321
carp gFCRH5-2 5  63.2-65.4 SNP1282-SNP0995 3.1 4.23 39 53 18.6
qFCRH8 8  30.4-46.0 SNP0044-HLJ866  18.0 4.23 4.0 5.3 174
qFCRH19 19 10.1-13.6 SNP0148-HLJ547  24.8 4.25 3.8 5.3 223
qFCRH21 21% 32.0-40.8 HLJE141-SNP1194 275 5.54 39 53 316
qFCRH24 24 13.1-17.2 SNP0156-HLJ1419 21.7 5.75 42 5.3 334
gqFCRH30 30 0.0-8.3 SNP1391-SNP0050 13.4 4.46 3.7 5.3 17.0
qFCRH33 337 24-638 SNP0110-HLJ437  21.0 547 4.1 53 29.3
qFCRH41 41 19.2-215 SNP1156-HLJE12  16.0 4.79 3.6 53 23.7

@ QTL intervals that are genome-wide significant QTL. PVE, phenotypic variance explained.

4.3. A high efficiency strategy for identify candidate genes of FCR

Identifying candidate genes from a mapped QTL is a difficult and
complex research for almost all quantitative traits and most aqua-
culture breeding animals (Shmookler Reis, 2003; Drinkwater and
Gould, 2012). Aquaculture breeding animals tend to have relative
large quantities of DNA in their genome and more non-coding
DNA than coding DNA, making it difficult to identify particular
genes of interest. Further, Aquaculture breeding animals have rela-
tively long generation times, in general three years. Based on phe-
notypes, one is seldom able to study millions of individuals in order
to isolate it from the many thousands of other genes in the organ-
ism (Xu et al., 2012). Thus it is difficult to discern the effect of a
single gene (QTL). Here, we recommend a simple and efficient
approach to identify candidate genes for FCR from QTL in a low-
density map. The key points in this strategy are that we are
employing a high density genetic map and a reference genome. In
addition, most makers are similar between the low- and the high-
density maps. In this study, microsatellite markers were employed
among experimental panels and the high-density map (Xu et al.,,
2014b). In the future, researchers can use these microsatellite as
well as SNP markers even though we have not used them in this
study.

4.4. Comparison with previous studies

FCR is one of the most important economic traits in fish, as fish with
a better FCR increase profits. QTLs for FCR have been reported in cattle
(Nkrumabh et al., 2007), pigs (Houston et al., 2005) and chickens (Van
Kaam et al.,, 1999). Zimmerman et al. (2005) revealed three QTLs for
the number of pyloric caeca in three LGs of rainbow trout, an important
index associated with FCR in that species. QTL analyses for FCR in aqua-
culture fishes are rarely reported. A genetic map constructed by AFLP
markers was also used to find a QTL associated with FCR in channel cat-
fish (Liu, 2001).

As a few QTLs associated with FCR traits in common carp (Li et al.,
2009; Zhang et al., 2010; Wang et al., 2012) have been identified, lit-
tle genetic variation has been reported by the detected QTLs due to
small sample sizes or to a low-density genetic map. In this study,
two populations with a significant differ in FCR trait which FCR of
mirror carp panel (average FCR: 65.6% + 10.9%) is higher than in

hybride panel (average FCR: 37.0% + 10.6%), were used to find re-
peated QTL interval in both populations to certify QTL. Finally,
three repeat QTL intervals were found between this families. Thus
we not only took advantage of two populations but also employed
a high-density map by comparative genome strategy. Hence, eigh-
teen candidate genes close linked to FCR were obtained, which pre-
vious studies had not identified (Zhang et al., 2010; Wang et al.,
2012).

Similar candidate genes associated with feed conversation rate
have been found in other animals. These same function of genes sug-
gested that the techniques and strategies employed were reliable
and feasible. For example, IGF-1 as a candidate gene in this study
was in a QTL interval on LG17, and this gene was associated with a
significant or extremely significant difference in feed conversion
ratio in yellow chicken (Zhang et al., 2013a, 2013b). The TGF-S re-
ceptor is also a candidate gene in a QTL on LG17 in our study,
which is associated with an extremely significant difference in the
feed conversion ratio in chicken (Rasal et al., 2015). In addition,
two genes, gdf7 in qFCRM12 on LG22 and tgfb2 in qFCRM33 on
LG18, involved in TGF-P signaling pathway were also identified as
candidate gene affecting FCR.

To today, in various investigations, we have not distinguished
between markers that are linked only to growth, and markers
that contribute to both growth and FCR. The loci associated with
growth and FCR are interrelated, and there are a few associated
candidate genes. In future, if these linkages are proven in breeding
and phenotypic evaluation studies, they could prove useful
for marker-assisted fish breeding (Poompuang and Hallerman,
1997). The results of our study will contribute to realization of
this goal.

5. Conclusions

The results suggest that QTL associated with FCR exhibited overlap-
ping intervals across two mapping populations. Our results also suggest
that a low-density map can be employed to identify candidate genes by
matching putative QTL markers to a high-density map and using a refer-
ence genome. Eighteen candidate genes for FCR traits were identified,
and these genes could be utilized for marker-assisted selection of com-
mon carp.
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Fig. 3. Locations of QTL intervals related to the feed conversion ratio trait on high-density linkage map and whole genomic scaffold of Cyprinus carpio. Eight linkage groups containing QTL
regions were aligned to the high linkage group including Lg1 to LG2, Lg7 to LG37, Lg12 to LG22, Lg16 to LG17, Lg21 to LG26, Lg30 to LG21, Lg33 to LG18, and Lg38 to LG4.
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Table 2

Candidate genes of FCR identified by comparative genomics.
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QTL LG* Gene Gene name Function of gene Pathway involved
Symbol
qFCRM1 2 rasgrf2a RAS protein-specific guanine Molecular switches for pathways regulating cell proliferation, survival, Ras signaling pathway
nucleotide-releasing factor 2a growth, migration, and differentiation
insra Insulin receptor a Metabolism of carbohydrates, fats, and protein Insulin signaling pathway
qFCRM7 37  fgfbp2 Fibroblast growth factor binding  Angiogenesis, wound healing, embryonic development Signaling regulating
protein 2 pluripotency of s-cells
egf Epidermal growth factor Stimulates cell growth, proliferation, and differentiation Pancreatic cancer
qFCRM12 22 gdf7 Growth differentiation factor 7 Growth factor activity TGF-beta signaling pathway
mdhlab Malate dehydrogenase 1Ab, NAD  Malate dehydrogenase activity, oxidoreductase activity, carbohydrate and Carbon metabolism; glucose
(soluble) carboxylic acid metabolic process, malate metabolic process, tricarboxylic metabolism
acid cycle
qFCRM16 17  tgfbr2(*)  Transforming growth factor, beta  Growth, development, tissue homeostasis, and regulation of the immune Cytokine-cytokine receptor
receptor Il system interaction
Smad?7 SMAD family member 7 Controls organ size from flies to humans Hippo signaling pathway
igflra(*)  Insulin-like growth factor 1a Childhood growth and anabolic effects in adults IGF-1 pathway
receptor
qFCRM21-1 26 arhgap24 Rho GTPase-activating protein 24 Molecular switches for signaling pathways regular cell proliferation, survival, Ras signaling pathway
growth, migration
raplgap2b RAP1 GTPase-activating protein Molecular switches for signaling pathways regular cell proliferation, survival, Ras signaling pathway
2b growth, migration
qFCRM30 21  lipeb Lipase, hormone-sensitive b Releases fatty acids (FAs) and glycerol for use by other organs as energy Regulation of lipolysis in
substrates adipocytes
Isl-2a Insulin gene enhancer protein Metabolism of carbohydrates, fats, protein Insulin signaling pathway
qFCRM33 18 mecr Mitochondrial trans-2-enoyl-CoA  Oxidoreductase activity, trans-2-enoyl-CoA reductase (NADPH) activity Carbohydrate and lipid
reductase metabolism; fatty acid
metabolism
tgfb2 Transforming growth factor, beta  Cytokine activity, growth factor activity, TGF-beta receptor binding TGF- beta signaling pathway
2
gapdh Glyceraldehyde-3-phosphate NADP binding Metabolism of
dehydrogenase carbohydrates
qFCRM38 4  eif2bl Eukaryotic translation initiation NOT L-methionine biosynthetic process from methylthioadenosine Metabolism of proteins
factor 2B, subunit 1 alpha
pip5kl1 Phosphatidylinositol-4-phosphate Phosphatidylinositol phosphate kinase activity Inositol phosphate

5-kinase-like 1

metabolism

* genes mapped to the FCR traits in chicken.
2 The number of highly linkage group Xu et al. (2014b).
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