

Faculty of Engineering Mechanical Engineering Department

Linear Algebra and Vector Analysis MATH 1120 Lecture 10

: Instructor Dr. O. Philips Agboola

- The solutions of linear equations can sometimes be expressed using determinants.
 - To illustrate, let's solve the following pair of linear equations for the variable x.

$$\begin{cases} ax + by = r \\ cx + dy = s \end{cases}$$

 To eliminate the variable y, we multiply the first equation by d and the second by b, and subtract.

> adx + bdy = rdbcx + bdy = bs

adx - bcx = rd - bs

- Factoring the left-hand side, we get:
 (ad bc)x = rd bs
 - Assuming that $ad bc \neq 0$, we can now solve this equation for x: $x = \frac{rd - bs}{ad - bc}$
 - Similarly, we find: $y = \frac{as cr}{ad bc}$

 The numerator and denominator of the fractions for x and y are determinants of 2 x 2 matrices.

 So, we can express the solution of the system using determinants as follows.

• Using the notation $D = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad D_x = \begin{bmatrix} r & b \\ s & d \end{bmatrix} \quad D_y = \begin{bmatrix} a & r \\ c & s \end{bmatrix}$

the solution of the system can be written as:

$$x = \frac{|D_x|}{|D|}$$
 and $y = \frac{|D_y|}{|D|}$

E.g. 6—Cramer's Rule for a System with Two Variables

• Use Cramer's Rule to solve the system.

$$\begin{cases} 2x+6y=-1\\ x+8y=2 \end{cases}$$

E.g. 6—Cramer's Rule for a System with Two Variables

• For this system, we have:

$$\begin{vmatrix} D \\ 0 \end{vmatrix} = \begin{vmatrix} 2 & 6 \\ 1 & 8 \end{vmatrix} = 2 \cdot 8 - 6 \cdot 1 = 10$$
$$\begin{vmatrix} D_x \\ 0 \end{vmatrix} = \begin{vmatrix} -1 & 6 \\ 2 & 8 \end{vmatrix} = (-1)8 - 6 \cdot 2 = -20$$
$$\begin{vmatrix} D_y \\ 0 \end{vmatrix} = \begin{vmatrix} 2 & -1 \\ 1 & 2 \end{vmatrix} = 2 \cdot 2 - (-1)1 = 5$$

E.g. 6—Cramer's Rule for a System with Two Variables

• The solution is:

$$x = \frac{|D_x|}{|D|} = \frac{-20}{10} = -2$$

$$y = \frac{|D_y|}{|D|} = \frac{5}{10} = \frac{1}{2}$$

 Cramer's Rule can be extended to apply to any system of *n* linear equations in *n* variables in which the determinant of the coefficient matrix is not zero.

• As we saw in the preceding section, any such system can be written in matrix form as:

- By analogy with our derivation of Cramer's Rule in the case of two equations in two unknowns, we let:
 - *D* be the coefficient matrix in this system.
 - D_{x_i} be the matrix obtained by replacing the *i*th column of *D* by the numbers b_1, b_2, \ldots, b_n that appear to the right of the equal sign.

• The solution of the system is then given by the following rule.

 Suppose a system of *n* linear equations in the *n* variables x₁, x₂, . . . , x_n is equivalent to the matrix equation DX = B, and |D| ≠ 0.

– Then, its solutions are:

$$\mathbf{x}_{1} = \frac{\left| D_{\mathbf{x}_{1}} \right|}{\left| D \right|}, \ \mathbf{x}_{2} = \frac{\left| D_{\mathbf{x}_{2}} \right|}{\left| D \right|}, \ \dots, \ \mathbf{x}_{n} = \frac{\left| D_{\mathbf{x}_{n}} \right|}{\left| D \right|}$$

where D_{x_i} is the matrix obtained by replacing the *i*th column of *D* by the *n* x 1 matrix *B*.

E.g. 7—Cramer's Rule for a System of Three Variables

• Use Cramer's Rule to solve the system.

$$\begin{cases} 2x - 3y + 4z = 1 \\ x + 6z = 0 \\ 3x - 2y = 5 \end{cases}$$

 First, we evaluate the determinants that appear in Cramer's Rule.

 Note that D is the coefficient matrix and that D_x, D_y, and D_z are obtained by replacing the first, second, and third columns of D by the constant terms.

E.g. 7—Cramer's Rule for a System of Three Variables

 Now, we use Cramer's Rule to get the solution:

 $x = \frac{|D_x|}{|D|} = \frac{-78}{-38} = \frac{39}{19}$ $y = \frac{\left|D_{y}\right|}{\left|D\right|} = \frac{-22}{-38} = \frac{11}{19}$ $Z = \frac{\left|D_{z}\right|}{\left|D\right|} = \frac{13}{-38} = -\frac{13}{38}$

 Solving the system in Example 7 using Gaussian elimination would involve matrices whose elements are fractions with fairly large denominators.

 Thus, in cases like Examples 6 and 7,
 Cramer's Rule gives us an efficient way to solve systems of linear equations.

Limitations of Cramer's Rule

 However, in systems with more than three equations, evaluating the various determinants involved is usually a long and tedious task.

- This is unless you are using a graphing calculator.

Limitations of Cramer's Rule

Moreover, the rule doesn't apply if
| D | = 0 or if D is not a square matrix.

 So, Cramer's Rule is a useful alternative to Gaussian elimination—but only in some situations.