Faculty of Engineering

 Mechanical Engineering Department
Linear Algebra and Vector Analysis MATH 1120 Lecture 10

: Instructor
Dr. O. Philips Agboola

- Cramer's Rule

Linear Equations and Determinants

- The solutions of linear equations can sometimes be expressed using determinants.
- To illustrate, let's solve the following pair of linear equations for the variable x.

$$
\left\{\begin{array}{l}
a x+b y=r \\
c x+d y=s
\end{array}\right.
$$

Linear Equations and Determinants

- To eliminate the variable y, we multiply the first equation by d and the second by b, and subtract.

$$
\begin{aligned}
a d x+b d y & =r d \\
b c x+b d y & =b s \\
\hline a d x-b c x & =r d-b s
\end{aligned}
$$

Linear Equations and Determinants

- Factoring the left-hand side, we get:

$$
(a d-b c) x=r d-b s
$$

- Assuming that $a d-b c \neq 0$, we can now solve this equation for x :

$$
x=\frac{r d-b s}{a d-b c}
$$

- Similarly, we find: $\quad y=\frac{a s-c r}{a d-b c}$

Linear Equations and Determinants

- The numerator and denominator of the fractions for x and y are determinants of 2×2 matrices.
- So, we can express the solution of the system using determinants as follows.

Cramer's Rule for Systems in Two Variables

- The linear system $\left\{\begin{array}{l}a x+b y=r \\ c x+d y=s\end{array}\right.$
has the solution
provided

$$
X=\frac{\left|\begin{array}{ll}
r & b \\
s & d
\end{array}\right|}{\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|}
$$

$$
y=\frac{\left|\begin{array}{ll}
a & r \\
c & s
\end{array}\right|}{\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|}
$$

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right| \neq 0
$$

Cramer's Rule

- Using the notation

$$
D=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad D_{x}=\left[\begin{array}{ll}
r & b \\
s & d
\end{array}\right] \quad D_{y}=\left[\begin{array}{ll}
a & r \\
c & s
\end{array}\right]
$$

the solution of the system can be written as:

$$
x=\frac{\left|D_{x}\right|}{|D|} \quad \text { and } \quad y=\frac{\left|D_{y}\right|}{|D|}
$$

E.g. 6-Cramer's Rule for a System with Two Variables

- Use Cramer's Rule to solve the system.

$$
\left\{\begin{array}{r}
2 x+6 y=-1 \\
x+8 y=2
\end{array}\right.
$$

E.g. 6-Cramer's Rule for a System with Two Variables

- For this system, we have:

$$
\begin{aligned}
& |D|=\left|\begin{array}{ll}
2 & 6 \\
1 & 8
\end{array}\right|=2 \cdot 8-6 \cdot 1=10 \\
& \left|D_{x}\right|=\left|\begin{array}{cc}
-1 & 6 \\
2 & 8
\end{array}\right|=(-1) 8-6 \cdot 2=-20 \\
& \left|D_{y}\right|=\left|\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right|=2 \cdot 2-(-1) 1=5
\end{aligned}
$$

E.g. 6-Cramer's Rule for a System with Two Variables

- The solution is:

$$
\begin{aligned}
& x=\frac{\left|D_{x}\right|}{|D|}=\frac{-20}{10}=-2 \\
& y=\frac{\left|D_{y}\right|}{|D|}=\frac{5}{10}=\frac{1}{2}
\end{aligned}
$$

Cramer's Rule

- Cramer's Rule can be extended to apply to any system of n linear equations in n variables in which the determinant of the coefficient matrix is not zero.

Cramer's Rule

- As we saw in the preceding section, any such system can be written in matrix form as:

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

Cramer's Rule

- By analogy with our derivation of Cramer's Rule in the case of two equations in two unknowns, we let:
- D be the coefficient matrix in this system.
- $D_{x_{i}}$ be the matrix obtained by replacing the ith column of D by the numbers $b_{1}, b_{2}, \ldots, b_{n}$ that appear to the right of the equal sign.
- The solution of the system is then given by the following rule.

Cramer's Rule

- Suppose a system of n linear equations in the n variables $x_{1}, x_{2}, \ldots, x_{n}$ is equivalent to the matrix equation $D X=B$, and $|D| \neq 0$.
- Then, its solutions are:

$$
x_{1}=\frac{\left|D_{x_{1}}\right|}{|D|}, x_{2}=\frac{\left|D_{x_{2}}\right|}{|D|}, \ldots, x_{n}=\frac{\left|D_{x_{n}}\right|}{|D|}
$$

where $D_{x_{i}}$ is the matrix obtained by replacing the i th column of D by the $n \times 1$ matrix B.

E.g. 7—Cramer's Rule for a System of Three Variables

- Use Cramer's Rule to solve the system.

$$
\left\{\begin{array}{c}
2 x-3 y+4 z=1 \\
x+6 z=0 \\
3 x-2 y=5
\end{array}\right.
$$

- First, we evaluate the determinants that appear in Cramer's Rule.
E.g. 7-Cramer's Rule for a System of Three Variables

| $\|D\|=\left\|\begin{array}{ccc}2 & -3 & 4 \\ 1 & 0 & 6 \\ 3 & -2 & 0\end{array}\right\|$ | $=-38$ |
| :--- | :--- |\(\left|\begin{array}{|l|l}D_{x}\left|=\left|\begin{array}{ccc}1 \& -3 \& 4

0 \& 0 \& 6

5 \& -2 \& 0\end{array}\right|=-78\right.

\left|D_{y}\right|=\left|\begin{array}{ccc}2 \& 1 \& 4

1 \& 0 \& 6

3 \& 5 \& 0\end{array}\right| \& =-22\end{array}\right|\)| 2 | $\left\|=\left\|\begin{array}{ccc}2 & -3 & 1 \\ 1 & 0 & 0 \\ 3 & -2 & 5\end{array}\right\|=13\right.$ |
| :--- | :--- | :--- |

- Note that D is the coefficient matrix and that D_{x}, D_{y}, and D_{z} are obtained by replacing the first, second, and third columns of D by the constant terms.
E.g. 7-Cramer's Rule for a System of Three Variables
- Now, we use Cramer's Rule to get the solution:

$$
\begin{aligned}
& x=\frac{\left|D_{x}\right|}{|D|}=\frac{-78}{-38}=\frac{39}{19} \\
& y=\frac{\left|D_{y}\right|}{|D|}=\frac{-22}{-38}=\frac{11}{19} \\
& z=\frac{\left|D_{z}\right|}{|D|}=\frac{13}{-38}=-\frac{13}{38}
\end{aligned}
$$

Cramer's Rule

- Solving the system in Example 7 using Gaussian elimination would involve matrices whose elements are fractions with fairly large denominators.
- Thus, in cases like Examples 6 and 7, Cramer's Rule gives us an efficient way to solve systems of linear equations.

Limitations of Cramer's Rule

- However, in systems with more than three equations, evaluating the various determinants involved is usually a long and tedious task.
- This is unless you are using a graphing calculator.

Limitations of Cramer's Rule

- Moreover, the rule doesn't apply if $D \mid=0$ or if D is not a square matrix.
- So, Cramer's Rule is a useful alternative to Gaussian elimination-but only in some situations.

