Faculty of Engineering Mechanical Engineering Department

# Linear Algebra and Vector Analysis MATH 1120 

: Instructor<br>Dr. o. Phillips Agboola

- Matrices and Systems of Linear Equations


## Introduction

- In this section, we express a linear system by a matrix.

| Linear system |  | Augmented matrix |
| :---: | :---: | :---: |
| $\left\{\begin{array}{rrrr}2 x-y=5 \\ x+4 y=7 & \text { Equation 1 }\end{array}\right.$ | $\left[\begin{array}{rrr}2 & -1 & 5 \\ 1 & 4 & 7\end{array}\right]$ |  |
|  | $x$ | $y$ |

- This matrix is called the augmented matrix of the system.
- The augmented matrix contains the same information as the system, but in a simpler form.
- The operations we learned for solving systems of equations can now be performed on the augmented matrix.


## Matrix—Definition

- An $m \times n$ matrix is a rectangular array of numbers with $m$ rows and $n$ columns.

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \cdots & a_{m n}
\end{array}\right] \leftarrow \leftarrow \leftarrow \leftarrow 4 \text { rows }} \\
& \underbrace{\substack{ \\
\text { i }}}_{n \text { columns }}
\end{aligned}
$$

## Matrix—Definition

- We say the matrix has dimension $m \times n$.
- The numbers $a_{i j}$ are the entries of the matrix.
- The subscript on the entry $a_{i j}$ indicates that it is in the ith row and the $j$ th column.


## Examples

- Here are some examples.

| Matrix | Dimension |  |
| :---: | :---: | :---: |
| $\left[\begin{array}{ccc}1 & 3 & 0 \\ 2 & 4 & -1\end{array}\right]$ | $2 \times 3$ | 2 rows <br> by 3 columns |
| $\left[\begin{array}{cccc}6 & -5 & 0 & 1\end{array}\right]$ | $1 \times 4$ | 1 row <br> by 4 columns |

## Augmented Matrix

- We can write a system of linear equations as a matrix by writing only the coefficients and constants that appear in the equations.
- This is called the augmented matrix of the system.


## Augmented Matrix

- Here is an example.


## Linear System Augmented Matrix

$$
\left\{\begin{aligned}
3 x-2 y+z & =5 \\
x+3 y-z & =0 \\
-x+\quad 4 z & =11
\end{aligned}\right.
$$

$$
\left[\begin{array}{cccc}
3 & -2 & 1 & 5 \\
1 & 3 & -1 & 0 \\
-1 & 0 & 4 & 11
\end{array}\right]
$$

- Notice that a missing variable in an equation corresponds to a 0 entry in the augmented matrix.

Finding Augmented Matrix of Linear System

- Write the augmented matrix of the system of equations.

$$
\left\{\begin{array}{r}
6 x-2 y-z=4 \\
x+3 z=1 \\
7 y+z=5
\end{array}\right.
$$

## Example1—Finding Augmented Matrix of Linear System

- First, we write the linear system with the variables lined up in columns.

$$
\left\{\begin{array}{r}
6 x-2 y-z=4 \\
x+3 z=0 \\
7 y+z=5
\end{array}\right.
$$

## Example: 1—Finding Augmented Matrix of Linear System

- The augmented matrix is the matrix whose entries are the coefficients and the constants in this system.

$$
\left[\begin{array}{cccc}
6 & -2 & -1 & 4 \\
1 & 0 & 3 & 1 \\
0 & 7 & 1 & 5
\end{array}\right]
$$

## Elementary Row Operations

- The operations we used in Section 6.3 to solve linear systems correspond to operations on the rows of the augmented matrix of the system.
- For example, adding a multiple of one equation to another corresponds to adding a multiple of one row to another.


## Elementary row operations:

1. Add a multiple of one row to another.
2. Multiply a row by a nonzero constant.
3. Interchange two rows.

- Note that performing any of these operations on the augmented matrix of a system does not change its solution.

Elementary Row Operations-Notation

- We use the following notation to describe the elementary row operations:

| Symbol | Description |
| :---: | :--- |
| $\mathrm{R}_{i}+k \mathrm{R}_{j} \rightarrow \mathrm{R}_{i}$ | Change the th row by adding <br> $k$ times row $j$ to it. <br> Then, put the result back in row $i$. |
| $k \mathrm{R}_{i}$ | Multiply the jth row by $k$. |
| $\mathrm{R}_{i} \leftrightarrow \mathrm{R}_{j}$ | Interchange the th and jth rows. |

## Elementary Row Operations

- In the next example, we compare the two ways of writing systems of linear equations.


## 2-Elementary Row Operations and

 Linear System- Solve the system of linear equations.

$$
\left\{\begin{aligned}
x-y+3 z & =4 \\
x+2 y-2 z & =10 \\
3 x-y+5 z & =14
\end{aligned}\right.
$$

- Our goal is to eliminate the $x$-term from the second equation and the $x$ - and $y$-terms from the third equation.

Example: 2-Elementary Row Operations and Linear System
For comparison, we write both the system of .equations and its augmented matrix.

| System | Augmented Matrix |
| :---: | :---: |
| $\left\{\begin{array}{r}x-y+3 z=4 \\ x+2 y-2 z=10 \\ 3 x-y+5 z=14\end{array}\right.$ | $\left[\begin{array}{rrrr}1 & -1 & 3 & 4 \\ 1 & 2 & -2 & 10 \\ 3 & -1 & 5 & 14\end{array}\right]$ |
| $\left\{\begin{array}{c}x-y+3 z=4 \\ 3 y-5 z=6 \\ 2 y-4 z=2\end{array}\right.$ | $\left.\begin{array}{\|c}R_{3}-3 R_{1} \rightarrow R_{3}\end{array} \left\lvert\, \begin{array}{rrrr}1 & -1 & 3 & 4 \\ 0 & 3 & -5 & 6 \\ 0 & 2 & -4 & 2\end{array}\right.\right]$ |

Example:-2-Elementary Row Operations and Linear System
$\left\{\left.\begin{array}{rl}\left\{\begin{array}{r}x-y+3 z=4 \\ 3 y-5 z=6 \\ y-2 z=1\end{array}\right. \\ \left\lvert\, \begin{array}{r}x-y+3 z=4 \\ z=3 \\ y-2 z=1\end{array}\right. \\ \left\lvert\, \begin{array}{rrrr}x-y+3 z=4 \\ y-2 z=1 \\ z=3\end{array}\right. & \xrightarrow{\left[\begin{array}{rrrr}1 & -1 & 3 & 4 \\ 0 & 3 & -5 & 6 \\ 0 & 1 & -2 & 1\end{array}\right]} \xrightarrow{R_{2}-3 R_{3} \rightarrow R_{2}}\left[\begin{array}{rrrr}1 & -1 & 3 & 4 \\ 0 & 0 & 1 & 3 \\ 0 & 1 & -2 & 1\end{array}\right] \\ R_{2} \leftrightarrow R_{3}\end{array}\left[\begin{array}{rrrr}1 & -1 & 3 & 4 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & 3\end{array}\right] \right\rvert\,\right.$

## Example: 2—Elementary Row Operations and Linear System

- Now, we use back-substitution to find that:

$$
x=2, y=7, z=3
$$

- The solution is (2, 7, 3).


## EXAMPLE 6

Using
Elementary
Row Operations
and Augmented
Matrices
In the left column we solve a linear system by operating on the equations, and in the right column we solve it by operating on the rows of the augmented matrix.

System

$$
\begin{array}{r}
x+y+2 z=9 \\
2 x+4 y-3 z=1 \\
3 x+6 y-5 z=0
\end{array}
$$

Add -2 times the first equation to the second to obtain

Augmented Matrix

$$
\left[\begin{array}{rrrr}
1 & 1 & 2 & 9 \\
2 & 4 & -3 & 1 \\
3 & 6 & -5 & 0
\end{array}\right]
$$

Add -2 times the first row to the second to obtain

$$
\begin{aligned}
x+y+2 z= & 9 \\
2 y-7 z= & -17 \\
3 x+6 y-5 z= & 0
\end{aligned}
$$

Add -3 times the first equation to the third to obtain

$$
\begin{aligned}
x+y+2 z & =9 \\
2 y-7 z & =-17 \\
3 y-11 z & =-27
\end{aligned}
$$

Multiply the second equation by $\frac{1}{2}$ to obtain

$$
\begin{aligned}
x+y+2 z & =9 \\
y-\frac{7}{2} z & =-\frac{17}{2} \\
3 y-11 z & =-27
\end{aligned}
$$

$\left[\begin{array}{rrrr}1 & 1 & 2 & 9 \\ 0 & 2 & -7 & -17 \\ 3 & 6 & -5 & 0\end{array}\right]$

Add -3 times the first row to the third to obtain

$$
\left[\begin{array}{rrrr}
1 & 1 & 2 & 9 \\
0 & 2 & -7 & -17 \\
0 & 3 & -11 & -27
\end{array}\right]
$$

Multiply the second row by $\frac{1}{2}$ to obtain

$$
\left[\begin{array}{rrrr}
1 & 1 & 2 & 9 \\
0 & 1 & -\frac{7}{2} & -\frac{17}{2} \\
0 & 3 & -11 & -27
\end{array}\right]
$$

Add -3 times the second equation to the third to obtain

$$
\begin{aligned}
x+y+2 z & =9 \\
y-\frac{7}{2} z & =-\frac{17}{2} \\
-\frac{1}{2} z & =-\frac{3}{2}
\end{aligned}
$$

Multiply the third equation by -2 to obtain

$$
\begin{aligned}
x+y+2 z & =9 \\
y-\frac{7}{2} z= & -\frac{17}{2} \\
z & =3
\end{aligned}
$$

Add -1 times the second equation to the first to obtain

$$
\begin{aligned}
x+\frac{11}{2} z & =\frac{35}{2} \\
y-\frac{7}{2} z= & -\frac{17}{2} \\
z & =3
\end{aligned}
$$

Add -3 times the second row to the third to obtain

$$
\left[\begin{array}{rrrr}
1 & 1 & 2 & 9 \\
0 & 1 & -\frac{7}{2} & -\frac{17}{2} \\
0 & 0 & -\frac{1}{2} & -\frac{3}{2}
\end{array}\right]
$$

Multiply the third row by -2 to obtain

$$
\left[\begin{array}{rrrr}
1 & 1 & 2 & 9 \\
0 & 1 & -\frac{7}{2} & -\frac{17}{2} \\
0 & 0 & 1 & 3
\end{array}\right]
$$

Add -1 times the second row to the first to obtain

$$
\left[\begin{array}{rrrr}
1 & 0 & \frac{11}{2} & \frac{35}{2} \\
0 & 1 & -\frac{7}{2} & -\frac{17}{2} \\
0 & 0 & 1 & 3
\end{array}\right]
$$

Add $-\frac{11}{2}$ times the third equation to the first and $\frac{7}{2}$ times the third equation to the second to obtain

$$
\begin{aligned}
x \quad & =1 \\
y & =2 \\
z & =3
\end{aligned}
$$

Add $-\frac{11}{2}$ times the third row to the first and $\frac{7}{2}$ times the third row to the second to obtain

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

The solution

$$
x=1, \quad y=2, \quad z=3
$$

