

Faculty of Engineering Mechanical Engineering Department

Linear Algebra and Vector Analysis MATH 1120

: Instructor Dr. o. Phillips Agboola

Matrices and Systems of Linear Equations

Introduction

• In this section, we express a linear system by a matrix.

- This matrix is called the augmented matrix of the system.
- The augmented matrix contains the same information as the system, but in a simpler form.
- The operations we learned for solving systems of equations can now be performed on the augmented matrix.

Matrix—Definition

 An m x n matrix is a rectangular array of numbers with m rows and n columns.

Matrix—Definition

• We say the matrix has dimension *m* x *n*.

 The numbers a_{ij} are the entries of the matrix.

 The subscript on the entry a_{ij} indicates that it is in the *i*th row and the *j*th column.

Examples

• Here are some examples.

Matrix	Dimension	
$\begin{bmatrix} 1 & 3 & 0 \\ 2 & 4 & -1 \end{bmatrix}$	2 x 3	2 rows by 3 columns
[6 –5 0 1]	1 x 4	1 row by 4 columns

Augmented Matrix

 We can write a system of linear equations as a matrix by writing only the coefficients and constants that appear in the equations.

This is called the augmented matrix of the system.

Augmented Matrix

• Here is an example.

Linear System	Augmented Matrix		
$\int 3x - 2y + z = 5$ $x + 3y - z = 0$	$\begin{bmatrix} 3 & -2 & 1 & 5 \\ 1 & 3 & -1 & 0 \end{bmatrix}$		
$\begin{vmatrix} x + y \\ -x + 4z = 11 \end{vmatrix}$	$\begin{bmatrix} -1 & 0 & 4 & 11 \end{bmatrix}$		

 Notice that a missing variable in an equation corresponds to a 0 entry in the augmented matrix.

Finding Augmented Matrix of Linear System

• Write the augmented matrix of the system of equations.

$$\begin{cases} 6x - 2y - z = 4\\ x + 3z = 1\\ 7y + z = 5 \end{cases}$$

Example1—Finding Augmented Matrix of Linear System

• First, we write the linear system with the variables lined up in columns.

$$\begin{cases} 6x - 2y - z = 4 \\ x + 3z = 0 \\ 7y + z = 5 \end{cases}$$

Example: 1—Finding Augmented Matrix of Linear System

 The augmented matrix is the matrix whose entries are the coefficients and the constants in this system.

$$\begin{bmatrix} 6 & -2 & -1 & 4 \\ 1 & 0 & 3 & 1 \\ 0 & 7 & 1 & 5 \end{bmatrix}$$

Elementary Row Operations

 The operations we used in Section 6.3 to solve linear systems correspond to operations on the rows of the augmented matrix of the system.

 For example, adding a multiple of one equation to another corresponds to adding a multiple of one row to another.

• Elementary row operations:

- 1. Add a multiple of one row to another.
- 2. Multiply a row by a nonzero constant.
- 3. Interchange two rows.
- Note that performing any of these operations on the augmented matrix of a system does not change its solution.

Elementary Row Operations—Notation

• We use the following notation to describe the elementary row operations:

Symbol	Description	
$R_i + kR_j \to R_i$	Change the <i>i</i> th row by adding <i>k</i> times row <i>j</i> to it.	
	Then, put the result back in row <i>i</i> .	
<i>k</i> R _i	Multiply the <i>i</i> th row by k.	
$R_i \leftrightarrow R_j$	Interchange the <i>i</i> th and <i>j</i> th rows.	

Elementary Row Operations

 In the next example, we compare the two ways of writing systems of linear equations.

2—Elementary Row Operations and Linear System

• Solve the system of linear equations.

$$\begin{cases} x - y + 3z = 4 \\ x + 2y - 2z = 10 \\ 3x - y + 5z = 14 \end{cases}$$

 Our goal is to eliminate the *x*-term from the second equation and the *x*- and *y*-terms from the third equation.

Example: 2—Elementary Row Operations and Linear System

For comparison, we write both the system of •equations and its augmented matrix.

System	Augmented Matrix
$\begin{cases} x - y + 3z = 4 \\ x + 2y - 2z = 10 \\ 3x - y + 5z = 14 \end{cases}$	$\begin{bmatrix} 1 & -1 & 3 & 4 \\ 1 & 2 & -2 & 10 \\ 3 & -1 & 5 & 14 \end{bmatrix}$
$\begin{cases} x - y + 3z = 4\\ 3y - 5z = 6\\ 2y - 4z = 2 \end{cases}$	$ \xrightarrow{R_2 - R_1 \to R_2}_{R_3 - 3R_1 \to R_3} \begin{bmatrix} 1 & -1 & 3 & 4 \\ 0 & 3 & -5 & 6 \\ 0 & 2 & -4 & 2 \end{bmatrix} $

Example:-2-Elementary Row Operations and Linear System

•
$$\begin{cases} x - y + 3z = 4 \\ 3y - 5z = 6 \\ y - 2z = 1 \end{cases} \xrightarrow{\frac{1}{2}R_3} \begin{bmatrix} 1 & -1 & 3 & 4 \\ 0 & 3 & -5 & 6 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$
$$\begin{cases} x - y + 3z = 4 \\ z = 3 \\ y - 2z = 1 \end{cases} \xrightarrow{R_2 - 3R_3 \to R_2} \begin{bmatrix} 1 & -1 & 3 & 4 \\ 0 & 0 & 1 & 3 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$
$$\begin{cases} x - y + 3z = 4 \\ y - 2z = 1 \\ z = 3 \end{cases} \xrightarrow{R_2 \leftrightarrow R_3} \begin{bmatrix} 1 & -1 & 3 & 4 \\ 0 & 0 & 1 & 3 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Example: 2—Elementary Row Operations and Linear System

 Now, we use back-substitution to find that:

$$x = 2, y = 7, z = 3$$

- The solution is (2, 7, 3).

EXAMPLE 6

Using Elementary Row Operations and Augmented Matrices

In the left column we solve a linear system by operating on the equations, and in the right column we solve it by operating on the rows of the augmented matrix.

System x + y + 2z = 9 2x + 4y - 3z = 1 3x + 6y - 5z = 0Add -2 times the first

Add -2 times the first equation to the second to obtain

Augmented Matrix

[1	1	2	9]
2	4	-3	1
3	6	-5	0

Add -2 times the first row to the second to obtain

$$x + y + 2z = 9$$
$$2y - 7z = -17$$
$$3x + 6y - 5z = 0$$

Add -3 times the first equation to the third to obtain

$$x + y + 2z = 9$$
$$2y - 7z = -17$$
$$3y - 11z = -27$$

Multiply the second equation by $\frac{1}{2}$ to obtain

$$x + y + 2z = 9$$

$$y - \frac{7}{2}z = -\frac{17}{2}$$

$$3y - 11z = -27$$

$$\begin{bmatrix} 1 & 1 & 2 & 9 \\ 0 & 2 & -7 & -17 \\ 3 & 6 & -5 & 0 \end{bmatrix}$$

Add -3 times the first row to the third to obtain

$$\begin{bmatrix} 1 & 1 & 2 & 9 \\ 0 & 2 & -7 & -17 \\ 0 & 3 & -11 & -27 \end{bmatrix}$$

Multiply the second row by $\frac{1}{2}$ to obtain

$$\begin{bmatrix} 1 & 1 & 2 & 9 \\ 0 & 1 & -\frac{7}{2} & -\frac{17}{2} \\ 0 & 3 & -11 & -27 \end{bmatrix}$$

Add -3 times the second equation to the third to obtain

$$x + y + 2z = 9$$

$$y - \frac{7}{2}z = -\frac{17}{2}$$

$$-\frac{1}{2}z = -\frac{3}{2}$$

Multiply the third equation by -2 to obtain

$$x + y + 2z = 9$$
$$y - \frac{7}{2}z = -\frac{17}{2}$$
$$z = 3$$

Add -1 times the second equation to the first to obtain

$$x + \frac{11}{2}z = \frac{35}{2}$$
$$y - \frac{7}{2}z = -\frac{17}{2}$$
$$z = 3$$

Add -3 times the second row to the third to obtain

$$\begin{bmatrix} 1 & 1 & 2 & 9 \\ 0 & 1 & -\frac{7}{2} & -\frac{17}{2} \\ 0 & 0 & -\frac{1}{2} & -\frac{3}{2} \end{bmatrix}$$

Multiply the third row by -2 to obtain

[1	1	2	97
0	1	$-\frac{7}{2}$	$-\frac{17}{2}$
Lo	0	1	3

Add -1 times the second row to the first to obtain

$$\begin{bmatrix} 1 & 0 & \frac{11}{2} & \frac{35}{2} \\ 0 & 1 & -\frac{7}{2} & -\frac{17}{2} \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Add $-\frac{11}{2}$ times the third equation to the first and $\frac{7}{2}$ times the third equation to the second to obtain

$$\begin{array}{c} x & = 1 \\ y & = 2 \\ z = 3 \end{array}$$

The solution

$$x = 1, y = 2, z = 3$$

Add $-\frac{11}{2}$ times the third row to the first and $\frac{7}{2}$ times the third row to the second to obtain

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

